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Preface

This report is basically a compilation of the work performed in HRL from 1995 to the
present investigating the use of NEXRAD data for hydrologic modeling. Over this time span,
some of the results in this report were published in journals or presented at conferences. It was
decided to place the majority of the results into a final document that could be distributed to
interested groups as well as referenced in future reports.

As the work has progressed over a multi-year time span, more data has become available
for analysis. For example, the analyses in Chapter 2 were based on the 9 months of available
NEXRAD data, while the hydrologic simulations in Chapter 5 used 3 years of data.

The authors would like to thank Dr. Lee Larson and Dr. Charles Hoffeditz for their
support during their terms as Chief of the Hydrologic Research Lab. The comments of John
Schaake, Jay Breidenbach, Rich Fulton, Dennis Miller, and D.J. Seo are appreciated. The
helpful review and comments by Billy Olsen, Bill Lawrence, John Schmidt, and others at
ABRFC are acknowledged and appreciated.
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1. Introduction

1.1 Scope

For hydrologic modeling, the basic premise surrounding the use of NEXRAD and other radar
precipitation estimates is that higher resolution data will lead to better simulations. Until recently,
standard procedures within the NWS River Forecast System have called for models to be calibrated
and operational real time forecasts to be made using raingage measurements. Phase I of the
Distributed Modeling Project, originally developed by Lindsey (1993), Lindsey (1994), and
continued by Smith, (1996), attempts to address the questions: ‘How can Stage III precipitation
estimates be used with existing NWS hydrologic models and procedures to improve simulations?’;
‘Can the Sacramento model be used in lumped and semi-distributed modes with Stage I11?’; ‘If a
sufficient period of Stage III data is not available for calibration, can guidelines be developed for a
priori hydrologic model parameter adjustment so that historically derived parameters can be
modified for use with finer resolution Stage III data’? and “What level of basin sub-division will
give the optimum simulation results?’ In other words, Phase I addresses the situation of distributed
model inputs, not distributed model parameters. While many fully distributed parameter models
already exist, research has first been directed towards answering several basic questions concerning
the use of the gridded Stage III data. In Phase II of this project, it is envisioned that hydrologic
models having distributed parameters as well as being forced by distributed inputs will be
investigated.

The study area chosen for this work is the Illinois River above Tenkiller Ferry Lake in
Oklahoma. Hourly streamflow data is available for 8§ basins in this watershed, and the ABRFC has
the longest duration archive of hourly Stage III data. The basins were chosen as they are
unregulated headwater basins. Figure 1-1 displays the location map of the study basins.

The primary purpose of the research under Phase 1 is to address issues related to the RFC
scale of basins. However, the results may shed light on issues dealing with forecasting the response
of smaller basins.

1.2 Goals of Phase 1.

Two main goals are identified for Phase I:

1. Evaluate the improvement gained through the use of distributed inputs to existing
NWSRFS hydrologic models. Before moving to a fully distributed parameter hydrologic model in
future research, we want to first determine if any improvement can be gained by using distributed
inputs rather than lumped inputs. A semi-distributed modeling approach will be examined in which
existing basins will be disaggregated into a number of sub-basins, each receiving a spatially averaged
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precipitation input.

Figure 1-2 presents the modeling approach investigated in this research. On the left side of
the figure is the current method for lumped parameter modeling to generate hydrographs at a forecast
point. Lumped parameters are developed for the Sacramento model through calibration using
upwards of 45 years of precipitation and streamflow data. Precipitation input to the models is in the
form of a 6-hour mean areal precipitation (MAP) value most commonly determined by Thiessen
weighting of rain gage reports. Due to reporting limitations in the rain gage network, the minimum
time step was set at 6 hours.

The right hand side of Figure 1-2 presents the semi-distributed modeling approach. In
essence, this approach models a basin by disaggregating the area into a number of constituent sub-
basins. For each of these sub-basins, Stage III data is used to define a mean areal precipitation value
(MAPX). Hopefully, disaggregation will capture the essential spatial variability in the rainfall to
provide an improvement over lumped modeling. In addition, each sub-basin will have its own
unique unit hydrograph. Routing of sub-basin hydrographs to the main basin outlet will be
accomplished by having each sub-basin unit hydrograph reflect both the transformation of runoff
depth to discharge as well as the translation of the sub-basin hydrograph to the main basin outlet.
Parameters for the Sacramento model will be developed through calibration or a priori adjustment
of the lumped calibrated parameters. A key question posed by this formulation is how to
parameterize and calibrate a semi-distributed hydrologic model given only observed streamflow
information at the outlet.

2. Develop tools and procedures to enable RFC personnel to more effectively use the NEXRAD
data for hydrologic modeling. Examples of such tools include methods of deriving synthetic unit
hydrographs for sub-basins in semi-distributed modeling. In addition, additional capabilities need
to be added to the Interactive Calibration Program (ICP) to enable RFC personnel to do hydrologic
modeling at finer time scales. These enhancements include being able to plot hourly discharge data
and to provide statistics based on shorter time step information. In addition, a new operation for
performing Muskingum-Cunge routing between sub-basins is desirable. Such a channel routing
procedure would help limit modeling uncertainty to the rainfall-runoff processes.

1.3 Overview of the report

If a semi-distributed modeling format is to be used, then some method of parameterization
and calibration needs to be developed. A significant effort was directed towards the investigation
of the sensitivity of Sacramento model runoff components to the scale of precipitation forcing.
These analyses are presented in Chapter 2.

In Chapter 3, comparisons of mean areal precipitation values derived from two types
of raingage networks (MAP) are compared to operational areal means computed from the gridded
Stage III data (MAPX). These analyses were conducted to evaluate the assumption that in flat
terrain, the long term mean annual areal mean precipitation derived from radar data should be similar
to that derived by a raingage network. In the first set of analyses, MAP values computed from the
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National Climatic Data Center (NCDC) cooperative observer network are compared to operational
MAPX values for a 7 month period for 8 basins from the Tulsa RFC. In the second set of analyses,
MAP values derived from the operational raingage network are compared to operations MAPX
values for the same nine basins over a three year period. The hydrologic modeling implications of
any differences between MAP and MAPX values are discussed.

Chapter 4 presents the results of numerical analyses investigating the optimum level of basin
disaggregation. Few guidelines exist in the literature to aid the hydrologist in answering the
question: “Given the availability of gridded precipitation measurements, to what level must a lumped
basin be disaggregated in order to improve hydrograph simulation”? In this chapter, the effects of
random noise in the gridded rainfall data on peak flow and volume are presented.

In Chapter 5, the main findings of Phase I are presented: results of lumped and semi-
distributed simulations using Stage III inputs. Improvements over rain gage based hydrologic
modeling are discussed. Approaches for deriving sub-basin unit hydrographs are described, as well
as the limitations of using the standard S-Curve method to derive a one-hour unit graph from a six-
hour unit graph. In addition, discussion is provided concerning the calibration of lumped and semi-
distributed sub-basins using Stage III. Chapter 6 is a natural continuation of Chapter 5 in that issues
related to sub-basin parameters are discussed.

While each chapter contains a section on results and conclusions, Chapter 7 serves to present
a list of overall conclusions. A series of recommendations is provided in Chapter 8. Graphs and
other information too numerous to present in the main body of the report are included in the
Appendices.

References
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2.0 The Sensitivity of the Sacramento Model to Precipitation Forcing of
Various Spatial and Temporal Scales.

2.1 Introduction

The Sacramento Soil Moisture Accounting Model (SAC-SMA) model is a conceptual
rainfall runoff model with spatially lumped parameters (Burnash, 1995; Burnash et al., 1973).
Within the National Weather Service, it is generally applied to river basins ranging from 300 km?
up to 5000 km*. Basin sizes vary according to hydrologic region, geomorphology, forecast point
requirements, and available data. The SAC-SMA model is generally run at a 6-hour time step but
can run at any time step. Inputs to the SAC-SMA model are 6-hour mean areal precipitation (MAP)
and 6-hour mean areal potential evaporation (MAPE). MAPE is estimated from pan evaporation
data or monthly mean potential evaporation, and may also be calculated from synoptic data. The
SAC-SMA model parameters are manually and automatically calibrated with the objective of
making the model simulation match historical observed discharge data. Calibration usually requires
at least 8 years of historical input precipitation data for continuous simulation and comparison to
observed discharge (U. of Arizona, 1995). An additional 8 years of historical data are recommended
for model verification. Therefore, the calibrated parameters are inherently tied to the spatial and
temporal scale, terrain, geographic location, and gage networks from which they are calibrated.

As aresult of the calibration parameters being linked to the historical rain gage network, a
direct utilization of the gridded Stage III data cannot be made without understanding how the SAC-
SMA model responds to precipitation forcing at various spatial and temporal scales. Optimally, a
lumped basin that is disaggregated into sub-basins should be recalibrated to reflect the model’s
response to a different scale and type of precipitation forcing (i.e., 6 hour gage MAP values vs. 1
hour gridded radar precipitation estimates) (Bradley and Kruger, 1998). Obled et al. (1994) followed
this procedure when they modeled a basin in a lumped fashion and then as a collection of 9
constituent sub-basins. However, For the NWS, less than 3 years of Stage III data are available for
recalibration of the SAC-SMA model, which is an insufficient length of time for calibration and
validation of model parameters. Comprehensive procedures exist within the NWS for the calibration
of the SAC-SMA on lumped basins provided there is stream gage data available. However, it is
unclear how to recalibrate the model parameters on the disaggregated sub-basins due to the absence
of stream gages at internal points. Thus, the NWS faces the unique problem of using a semi-
distributed modeling approach for operational forecasting, without a sufficient period of high
resolution Stage III data or observed discharge data with which to calibrate the sub-basins. Until an
adequate Stage III calibration data set is available, improved understanding is required concerning
SAC-SMA model parameter adjustments to account for model response to different scales of
precipitation inputs.
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This section presents the results of the sensitivity of the SAC-SMA model runoff component
volumes to Stage III gridded precipitation estimates at numerous space-time scales. There are no
actual hydrographs being presented in this section, simply the runoff component volumes. Although
model parameters are tied to the space-time scale, terrain, and gage network characteristics from
which they are calibrated, this section shows similar model results from a wide range of model
parameters. Therefore, the results presented are considered to be generally applicable to the SAC-
SMA model response and are not tied to the parameters used. A primary assumption in the analysis
is that the 6-hour Stage III MAPs are equal to the historical 6-hour gage MAPs because gage data
1s used by the Stage III multi-sensor field. In addition, the calibrated SAC-SMA model parameters
are assumed to be applicable to input MAPs estimated from Stage III data as well as gage network
data.

2.2 Review of related research

Hydrologic model response to precipitation inputs of various spatial and temporal resolutions
has been the subject of numerous investigations. Many studies have approached this problem from
the standpoint of rain gage sampling and density. Recently, the implementation of radar has enabled
hydrologists to begin the evaluation of model response to gridded precipitation estimates.
Intuitively, one would hypothesize that the use of higher resolution data leads to better model results.
Surprisingly, there does not seem to be a clear trend in the literature that supports this hypothesis.

In an oft-referenced work, Wilson et al. (1979) concluded that ignoring the spatial variability
of precipitation input, even when the total depth of rainfall is preserved, can have significant
influences on the runoff hydrograph. Their findings were based on the analysis of a 67 km? basin and
two levels of synthetic precipitation definition: in the first case, one gage was used to define the
input to a lumped parameter model, while in the second, 20 gages were used. Based on limited
testing, Shanhltz et al. (1981) arrived at a similar conclusion, as did Beven and Hornberger (1982)
who suggested that: ‘

....(the) incorporation of distributed inputs would lead to improvements in simulating
catchment hydrographs.’

On the other hand, Obled et al. (1994) used 21 rain gages to define the input to 9 sub-basins
representing a 71 km* basin. They presumed that providing distributed inputs to the model would
improve simulations, especially if parameter re-optimization was allowed. However, their semi-
distributed representation of the basin produced slightly worse results than a lumped representation
combined with coarser precipitation input, even after recalibration of the model parameters. The
authors were unable to prove the value of using distributed rainfall inputs to improve hydrologic
predictions, noting that:

‘better dynamics expected in the discharge from better information on rainfall pattern is not
demonstrated in (the) goodness-of-fit criteria’.
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Krajewski et al. (1991) saw more influence from temporal resolution of rainfall inputs than
from spatial variability. Given the very small size of the basin (7.5 km?), the authors concluded that
their results were reasonable. However, Pessoa et al. (1993) found that simulated hydrographs from
an 840 km* basin using distributed radar-rainfall inputs were not significantly different than
simulated hydrographs produced from lumped radar-rainfall inputs. Significant differences were
realized, however, when lumped rainfall inputs were defined as the arithmetic means of upto 5
randomly selected radar pixels.

Kouwen and Garland (1989) examined the effects of radar data resolution on runoff
hydrographs produced from a distributed parameter model, and attempted to define guidelines for
the appropriate level of rainfall input resolution. They found that coarser resolution radar input
sometimes produced better simulation results due to smoothing of errors present in finer resolution
data. However, they also recognized that local circumstances dictate whether radar data smoothed
into a coarser grid would be appropriate. Their study also presented significant differences between
runoff hydrographs produced by rain gage only data and radar data.

Kenner et al. (1996) recognized the need to identify the scale dependencies of critical
hydrologic parameters. Preliminary results were obtained when a 963.5 km? basin was modeled as
a single lumped area and as a collection of 5 sub-basins. In limited tests on a single extreme event,
the semi-distributed approach produced better agreement with the observed hydrograph than the
lumped approach. However, the results may be affected by the fact that neither approach was
calibrated.

In a recent study, Shah et. al. (1996) examined the spatial variability of rainfall on a small
(10.55 km?) basin for various levels of antecedent moisture conditions. Spatial averaging of rainfall
inputs led to adequate simulations under wet conditions. However, greater errors resulted when
spatially averaged rainfall fields were used with dry antecedent moisture conditions, indicating a
linkage between spatial variability of rainfall and the distribution of soil moisture which
subsequently controls the generation of runoff.

Ogden and Julien (1994) found severe reductions in peak discharge due to a reduction in
rainfall excess which was directly attributed to the aggregation of radar inputs. Their analysis used
high resolution radar inputs and a gridded rainfall runoff model on watersheds less than 150 km?.

Wood et al. (1988) introduced the concept of a representative elementary area (REA) to
account for the small-scale heterogeneities in the macro scale models. The REA represents the
threshold scale where statistical representations of smaller areas can replace actual patterns of
variability. For the 525 km? Little Washita catchment Wood (1995) estimated the threshold scale
to be on the order of 5 to 10 km®. However, Fan and Bras (1995) argued that the REA concept has
limited utility in hydrology because the REA is scale dependent, and it can vary on individual storm
events.
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Nalbantis (1995) developed guidelines for adjusting certain hydrologic model parameters to
account for changes in temporal modeling scales. He addressed the problem of lumped parameter
models calibrated with daily information that were then used at shorter time intervals to simulate
flood events. Often, this situation arises when continuous daily rainfall and streamflow data are
available for long periods, but an insufficient period of shorter time interval data is available for
proper calibration at shorter time intervals. His proposed strategy involved calibrating the model
at a daily time step, then adjusting certain time-dependent withdrawal coefficients to derive a model
to be used at a 1 hour time step. The daily model would be operated continuously. At the onset of
a flood event, the derived hourly model would be initialized using the states of the continuous daily
model. His results showed that the prediction of initial values of the 1 hour state variables related
to slow response of a basin can be done quite accurately. However, he could not produce an
automated method to reliably transfer the rapid response state variables from the daily to the hourly
scale without requiring significant tuning.

2.3 Method

In order to examine the response of the SAC-SMA model to Stage III precipitation inputs
at various spatial and temporal resolutions, a collection of synthetic sub-basins is created. The
synthetic sub-basins correspond to regular aggregations of HRAP bins within a 64x64 HRAP bin
matrix. These sub-basins range in size from 1x1 HRAP bin up to 64x64 HRAP bins, as shown in
Table 2-1. MAP inputs for the sub-basins are calculated from a 64x64 HRAP bin, 1-hour, Stage III
precipitation data set that encompasses a calibrated test basin at Eldon, Oklahoma. Figure 2-1 shows
the 64x64 HRAP bin experimental data set and the Eldon test basin. Figures 2-2a, b, ¢, d, ¢, f, and
g show the scaling of MAP inputs for a 1 hour accumulation of a Stage III precipitation field and the
resulting areal averaging of the high intensity event over the range of synthetic sub-basin scales
analyzed. Figure 2-2 clearly illustrates the loss of intensity that occurs when averaging precipitation
forcing over increasingly larger areas.

Sacramento model parameters were taken from a preliminary calibration of the Baron Fork
at Eldon, Oklahoma, U.S.A., whose drainage area is 795 km?. A 6 hour MAP time series for the
basin was derived using historical rain gage data. Observed mean daily flow records for the stream
gage at Eldon were obtained from the U.S. Geological Survey. The calibration time step was 6
hours. It is worth emphasizing that these SAC-SMA parameters, calibrated at 6 hours, and for a 795
km”* basin, were applied without change to each of the synthetic sub-basins in the subsequent
analyses. It should also be noted that the drainage area of the Baron Fork corresponds roughly to
the 8x8 HRAP bin area. The calibrated parameters are assumed to be reasonable for the entire 64x64
HRAP bin area, and the area is assumed to have similar rainfall runoff processes throughout.
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Figure 2-1 on following page: Location of the Illinois River basin (lightly highlighted) and the
calibrated test basin of the Baron Fork of the Illinois River at Eldon, Oklahoma (darker
highlighting). The basin is in the straddles the border of Oklahoma and Arkansas, which is located
on the southern plains of the United States. The 64x64 HRAP bin Stage III test data set is shown
by the square area surrounding the test basin. Precipitation is seen to the west and north of the
experimental area.
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Following pages:

Figure 2-2: Spatially Aggregated Stage III Precipitation Field Over Northeastern Oklahoma, January
16, 1994, 20:00z.

a) Stage IIT 1-hour precipitation field in units of millimeters (z-axis) and over a spatial extent of
64x64 HRAP bins. Each bin has an individual value relative to its neighbors, and is used as input
to the lumped SAC-SMA hydrologic model. Thus, 64* or 4096 individual SAC-SMA model runs
are used over this area for every hour of model simulation. (Maximum value: 19.01 mm)

b) Same data as shown in a) except it has been averaged in 2x2 HRAP bins. This field has
642/2>=1024 individual values and will require the same number of SAC-SMA model runs to
analyze. Notice that the averaging procedure reduces the peaks of actual values shown in a).
(Maximum value: 15.73 mm)

c) Same data as shown in a) except it has been averaged in 4x4 HRAP bins. This field has
64%/4>=256 individual values. Notice that each individual group appears as a “tic-tac-toe” board or
grid boxes. This may create the false impression that values have been grouped 3x3 rather than 4x4.
The values being plotted are at the corner of each square, not centered upon the square, thus a tic-
tac-toe board has 16 corners rather than 9 squares. (Maximum value: 11.56)

d) Same data as shown in a) except it has been averaged in 8x8 HRAP bins. This field has 64%/8?=64
individual values. Notice that this field only very coarsely resembles the original field shown in a)
and this is the scale at which the Eldon, OK test basin most closely represents. (Maximum value:
9.11 mm)

e) Same data as shown in a) except it has been averaged in 16x16 HRAP bins. This field has
64%/16>=16 individual values. (Maximum value: 6.32 mm)

f) Same data as shown in a) except it has been averaged in 32x32 HRAP bins. This field has
64°/32>=4 individual values. This field is arguably a poor representation of the original spatial
distribution of data (Maximum value: 2.11 mm)

g) The entire field has now been averaged into a single, 64x64 value requiring only a single run of

the SAC-SMA model. This corresponds to the lumped model run for the entire 64x64 HRAP bin
experimental area. (Maximum value: 1.45 mm)
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Within this framework, the sensitivity of the SAC-SMA runoff components to precipitation
forcing at various scales is analyzed. The SAC-SMA model is run in a continuous mode for the
entire 9-month period using model time steps of 1, 3, and 6 hours, and for each of the spatial scales
listed in Table 2-1. The Stage III data set covers the eastern portion of the Tulsa, Oklahoma, river
forecasting region and spans from May 7, 1993 through January 31, 1994. This time period records
the very wet summer which resulted in the “Great Flood of ‘93" in the Midwestern United States.
Soil moisture accounting is performed over the entire 64x64 HRAP bin area and is maintained
independently for every sub-basin and at each space-time scale analyzed.

Table 2-1: Sub-basin Scale Dimensions and Units

Sub-basin Size  Sub-basin Size  Sub-basin Size Number of Sub-basins

(HRAP Bins) (km) (km?) Representing Entire Area

Ix1 4x4 16 4096

2x2 8x8 64 1024
4x4 16x 16 256 256
8x8 32x32 1,024 64

16 x 16 64 x 64 4,096 | 16

32x32 128 x 128 16,384 4

64 x 64 256 x 256 65,636 1

Storm characteristics are difficult to describe for the large 64x64 HRAP bin area, however,
some general storm information is useful to understanding the regional climate in the study area.
Rain was detected in the 64x64 study area for 2163 hours of the 6480 total hours of data between
May 7, 1993 and January 31, 1994. The average hourly precipitation coverage was 22% of the total
area with a mean hourly precipitation depth of 0.37 mm/64x64 HRAP bins, given the presence of
rain. There were approximately 45 events in the 9 month period that had a storm peak with greater
than 40% coverage in the 64x64 area and had a mean peak depth in the covered area of greater than
4 mm.

For comparison, runoff volumes generated by sub-basins within a given level of

disaggregation are spatially averaged over the entire 64x64 HRAP bin area. Routing of the runoff
components through a unit hydrograph or channel network is not performed in this analysis. The
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precipitation inputs for the 3-hour and 6-hour time scale analysis are derived from summing the 1-
hour data.

The model components analyzed include: precipitation depth, impervious runoff, direct
runoff, surface runoff, interflow, percolation, total evapotranspiration, supplemental baseflow,
primary baseflow, total channel inflow, water balance errors, and evapotranspiration demand. Figure
2-3 shows the general contribution of the various runoff components of the SAC-SMA model to the
runoff hydrograph. Figure 2-4 shows the fundamental conceptualization of the SAC-SMA model,
including all soil moisture storages, runoff components, and exchanges between the atmosphere and
land surface components. The names of the model components are specific to the conceptual
formulation of the SAC-SMA model and are not general terms of hydrologic science. Output
summary statistics are calculated over the 9-month period for all 13 model components and all sub-
basin scales analyzed. Statistics include mean, variance, maximum, minimum, and cumulative depth
values at all sub-basin scales. The analysis in this section only presents certain statistics, runoff
components, and time scale cases in order to highlight the most significant results.

2.4 Results
2.4.1 Spatial Analysis

Perhaps the most extreme change in modeling strategy for a River Forecast Center would be
to convert from 6-hour lumped parameter modeling using gage-derived precipitation estimates to
1-hour semi distributed modeling using precipitation estimates derived from NEXRAD. This first
series of analyses addresses such a dramatic change.

Figure 2-5 clearly shows the sub-basin scale sensitivities of the relative change in SAC-SMA
model runoff component volumes for the 1-hour model time step. Recall that the SAC-SMA
parameters are uniformly applied to each sub-basin. Each increase in basin resolution results in a
4 fold increase in the number of sub-basins being used to model the 64x64 HRAP bin test area. The
runoff components are scaled relative to their value generated at the 8x8 spatial scale because that
is the approximate spatial scale of the calibrated test basin. The SAC-SMA model generates surface
runoff when the two storage reservoirs, tension and free water storages, representing the upper soil
layer become saturated. Figure 2-3 shows surface runoff is the fast response rising limb of the
hydrograph. As seen in Figure 2-5, surface runoff is the most spatially sensitive component of the
SAC-SMA model, and decreases to zero as the spatial scale increases to 64x64 HRAP bins. Surface
runoff is also very sensitive at the finer spatial scales analyzed.

~ Interflow is the second fastest responding runoff component in the model followed by
supplemental baseflow. These runoff components represent the falling limb of the hydrograph as
shown in Figure 2-3. Interflow is conceptualized as the lateral flow from the upper soil layer and
is generated from the upper zone free water storage reservoir. Supplemental baseflow is the fast
responding baseflow component and is generated from the lower zone free supplemental water
reservoir. Figure 2-5 shows interflow and supplemental baseflow are also quite sensitive to spatial
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scale and they both decrease as the sub-basin scale increases. However, they do not prove to be very
sensitive at spatial scales less than the 16x16 sub-basin size. The figure shows how the reduction
of surface runoff, interflow, and supplemental baseflow contribute to the overall reduction of total
channel inflow as the sub-basin scale increases. Percolation, direct runoff, and primary baseflow
also exhibit a decrease in runoff volume as the spatial scale increases. Capturing the spatial
precipitation intensity characteristics exhibited in the Stage III data by using smaller sub-basins
without parameter recalibration accentuates the fast response runoff components, while having less
impact on the slower response components of the SAC-SMA model.

Evapotranspiration decreases as the sub-basin scale decreases, as shown in Figure 2-5. The
long-term water balance is maintained in the SAC-SMA model because the increase in total channel
inflow, produced at the finer spatial scales, results in less soil water available for evapotranspiration
during the drying periods. The SAC-SMA model scale dependency displayed in Figure 2-5 is
primarily attributed to the spatial averaging of high intensity precipitation events that produce
significant runoff (see Fig 2-2a-g). Increasing sub-basin scale decreases the mean areal precipitation
(MAP) to the extent that it does not satisfy the SAC-SMA upper zone tension and free water
storages, which decreases the frequency and runoff volume from those events which produce runoff
at the smaller spatial scales. Therefore, increasing the spatial scale increases the volume of
precipitation held in tension water storage where it evapotranspires into the atmosphere and reduces
total channel inflow. Georgakakos et al. (1996) also noticed that a lumped application of the SAC-
SMA model holds more water in storage as compared to a semi distributed application of the model.
The results shown in Figure 2-5 for surface runoff agree with those generated by Famighetti and
Wood (1994) on an 11.7 km? basin. However, Pessoa et al. (1993) detected very little difference in
hydrologic model response generated from a lumped versus fully distributed implementation of radar
rainfall data on an 840 km? basin.

The spatial analysis indicates that parameters derived from the 6-hour MAP inputs at a given
spatial scale cannot be distributed to sub-basins of different spatial scales and a 1-hour model time
step, without introducing significant biases in the volume and timing of SAC-SMA model runoff
components. Therefore, disaggregating a basin to capture the spatial variability of precipitation must
be accompanied by recalibration to remove biases in model simulation. All results presented must
be viewed according to the fundamental assumptions and limitations of the analysis and may vary
geographically.

2.4.2 Temporal Analysis

The time scale analysis is performed to investigate the effects of changing from the 6-hour
model time step, most commonly used for current operational forecasting, to the 1-hour time step
of the Stage III precipitation data. In the NWS a 6-hour MAP typically represents the lower bound
in temporal resolution because the rain gage networks currently used for forecasting procedures are
too sparse and don’t report frequently enough to produce meaningful hourly precipitation estimates.
The temporal analysis assumes the 6-hour MAP from the Stage III products are similar to the 6-hour
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MAPs derived from gage data. This assumption is reasonable because Stage III precipitation
estimates are merged with “ground truth” gage data.

.Modeling at finer time steps is expected to increase forecast lead times and increase
forecasting accuracy in fast response basins. For example, if a 6-hour time step is used, the NWS
River Forecasting System (NWSRFS) must collect and process data for the entire time interval
before the data is run through the models to generate a river forecast. NWSRFS uses a fixed time
interval and data is generally reported at fixed times, there is no means for a sliding type of time
interval. If a rain event occurs in the first 2 hours of the 6 hour time step, then all 6-hours must
clapse before the data is posted to the system for processing. In this example, a 1 hour time step
increases the forecast lead time by approximately 4 hours while more accurately representing the
intensity of the precipitation.

Figure 2-6 displays the percent change in SAC-SMA model runoff component volumes
when changing from a 6-hour time scale to a 1-hour time scale while holding the model parameters
constant. Values in Figure 2-6 represent the differences in 9-month totals in each of the runoff
component volumes. The figure shows that surface runoff is the most temporally sensitive model
component at the finer sub-basin scales. Surface runoff at the 8x8 spatial scale increases by over 21
percent when changing to the shorter 1-hour time scale. Interflow at the 8x8 spatial scale is shown
to increase by 20 percent when changing from the 6-hour to the 1-hour time scale, but is not as
sensitive as surface runoff at the finer spatial scales. Supplemental baseflow decreases with
decreasing time scale and is more sensitive at the finer spatial scales analyzed. Total channel inflow
also increases when changing from a 6-hour to a 1-hour time step and is more sensitive at the finer
spatial scales.

The results shown in Figure 2-6 are primarily attributed to the temporal averaging of high-
intensity, short-duration precipitation events which tend to produce surface runoff. This temporal
sensitivity of the SAC-SMA runoff volumes could suggest that the hydrologic processes in the
region are operating at a finer time scale than 6 hours. The temporal information contained in the 1-
hour Stage III products may possibly be used to improve hydrologic forecasting. Moreover, the
temporal analysis indicates that the parameters calibrated at the 6-hour time step cannot be applied
at the 1-hour time step without introducing the volume biases shown in Figure 2-6. Changing the
model time scale and keeping the model parameters fixed redistributes runoff between the rising
limb (surface) and the falling limb (interflow) of the runoff hydrograph, as well as between near
surface and groundwater runoff components. These runoff volume biases are particularly important
because they are most significant in the fast response surface runoff and interflow components of
the hydrograph, which are the most critical model elements in flood forecasting. In general, the
results displayed in Figures 2-5 and 2-6 indicate that the utilization of finer space-time scale
precipitation estimates, without parameter adjustments, introduces SAC-SMA runoff volume and
timing errors. These runoff volume and timing errors could potentially result in degradation of the
predictive ability of the model if used at finer time scales.
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2.4.3 Adjustment of Parameters for Space-Time Scales

One possible method for applying SAC-SMA model parameters at different space-time scales
is to make adjustments to parameters in order to minimize the biases created by changing the
precipitation intensity (precipitation depth/event duration) across space-time scales. The previous
section established that surface runoff is the most sensitive runoff component to space-time scales.
The following sections analyze the sensitivity of the runoff components to changes in the upper zone
free water maximum (UZFWM) and upper zone tension water maximum (UZTWM) threshold
parameters which are known to dominate the generation of surface runoff in the SAC-SMA model.
Almost every parameter in the SAC-SMA model could potentially effect surface runoff but they
were not analyzed in this work. Caution should be exercised because UZFWM and UZTWM also
control mterflow, percolation, supplemental baseflow and evapotranspiration components of the
SAC-SMA model. Percolation changes have an impact on lower zone free and tension water
storages, which directly affect supplemental and primary baseflow recharge and evapotranspiration.

Obled et al. (1994) disaggregated a lumped basin into 9 constituent sub-basins and
recalibrated the parameters of their semi-distributed hydrologic model using 9 distinct runoff events
over a 16 year period to account for the higher resolution rainfall input fields. However, the 9
months of Stage III data available for the present study are not sufficient for a recalibration of the
SAC-SMA parameters, as continuous simulation over an 8§ year period is recommended to obtain
parameters that are insensitive to the data period selected (U. of Arizona, 1995). Until a sufficient
length of record of data is available to calibrate the SAC-SMA model for various space-time scales
using Stage III precipitation inputs, alternative approaches to adjusting model parameters need to
be developed.

2.4.3.1 Upper Zone Free Water Parameter

The separation of fast responding surface runoff and interflow from the slow response
baseflow runoff is primarily controlled by the upper zone free water maximum parameter
(UZFWM). Bae and Georgakakos (1994) identify this parameter as the most sensitive when
examining high flows, where lowering the parameter value has more influence than increasing the
value. Their results indicate that the influence of UZFWM is reduced when both high and low flows
are considered.

An analysis of upper zone processes is performed by changing the relative size of the upper
zone free water maximum parameter. The UZFWM value of 18 mm was taken from a preliminary
calibration and trial runs are made at 50% increases and decreases, 27 mm and 9 mm respectively.
Figure 2-7 illustrates that the UZFWM parameter derived at one scale is not applicable across
different scales because surface runoff volumes are not preserved. Figure 2-7 shows that UZFWM
must be increased when modeling at finer space or time scales in order to accommodate the higher
intensity precipitation events and preserve surface runoff volumes. This affect is more pronounced
when the UZFWM parameter is small, which is in agreement with Bae and Georgakakos (1994).
The figure also shows that surface runoff is sensitive to UZFWM at both the 1-hour and 6-hour
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model time steps. Consider an example illustrated in Figure 2-7 in which a basin at the 8x8 HRAP
bin scale is calibrated at a 6-hour time step. If one chooses to disaggregate the basin into 4 sub-
basins (i.e., a move to the 4x4 scale) the UZFWM must be increased from 18 mm to approximately
27 mm in order to preserve the same volume of surface runoff.

Secondary effects of UZFWM adjustments are presented in Figures 2-8, 2-9, and 2-10.
Figure 2-8 shows that interflow is very sensitive to changes in UZFWM for all spatial scales
analyzed, and at both the 1-hour and 6-hour time steps. Increasing UZFWM increases interflow at
all spatial scales, which is the opposite effect that the parameter change has on surface runoff.
Figures 2-7 and 2-8 clearly illustrate how the UZFWM parameter controls the contribution of runoff
from surface (rising limb of hydrograph) or interflow (falling limb) because an increase in surface
runoff results in a decrease in interflow. Changing UZFWM has a wide range of impacts on
percolation across the numerous space-time scales presented in Figure 2-9. UZFWM affects both
the volume of water available for percolation and the rate of percolation in the SAC-SMA model.
The results in Figure 2-9 show no clear relationship between scale, UZFWM, and percolation, which
indicates a more in-depth percolation analysis is required. Figure 2-10 shows that supplemental
baseflow is sensitive to the UZFWM parameter across all space-time scales analyzed and in much
the same way the parameter affects percolation. This model behavior is expected because soil water
percolates from the upper zone free water reservoir down to the lower zone soil moisture reservoirs,
one of which is the lower zone free supplemental baseflow reservoir.

Adjustment of the SAC-SMA model UZFWM parameter is shown to be capable of
compensating for biases created from applying the model at space-time scales different from which
it1s calibrated. However, adjusting the UZFWM parameter also has a significant and opposite effect
on interflow, and a wide range of effects on percolation and supplemental baseflow. These complex
interactions effect the timing, volume, and shape of the resulting runoff hydrograph. Thus, adjusting
UZFWM effects the exchange of water between fast and slow response runoff as well as between
the upper and lower zone soil moisture. Figures 2-7, 2-8, 2-9, and 2-10 demonstrate the complex
problems inherent to recalibrating model parameters when distributing them spatially and
temporally.

2.4.3.2 Upper Zone Tension Water Parameter

Upper zone tension water maximum storage capacity (UZTWM) must be satisfied in the
SAC-SMA model before precipitation enters the upper zone free water storage where interflow and
percolation take place. The tension water storage also controls evapotranspiration, which accounts
for 77% of the losses in the water balance for the 9 month simulation period. Therefore, UZTWM
also controls runoff generation in the SAC-SMA model in much the same way the UZFWM
parameter does, and may also be recalibrated to account for runoff volume biases caused from
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applying model parameters across different space-time scales. The UZTWM parameter is calibrated
at 40 mm for the test basin and trials are run for values of 20 mm, 40 mm, 60 mm, and 80 mm.

Figure 2-11 shows that increasing UZTWM decreases surface runoff for all space-time scales
analyzed. However, the effects of UZTWM on surface runoff also exhibit the complex interaction
with interflow, percolation, and supplemental baseflow, just as the UZFWM parameter does in
Figures 2-7, 2-8, 2-9, and 2-10. Surface runoff is more sensitive to the UZEWM parameter than the
UZTWM parameter, but either may be used to adjust surface runoff volumes at all space-time scales
analyzed.

Figure 2-12 shows that evapotranspiration, ET, is sensitive to recalibration of the UZTWM
parameter for all space time scales analyzed. In general, ET is maximized at the calibrated UZTWM
value of 40mm and ET decreases as the parameter is either increased or decreased. ET is shown to
increase as the sub-basin spatial scale increases and when changing from the 1-hour to 6-hour time
step. Both observations are related to more precipitation residing in tension water storage as opposed
to becoming runoff. Although a clear trend of ET as a function of UZTWM is not present in Figure
2-12, the effect of space-time scales on ET is of the same order of magnitude as the changes in the
other most sensitive SAC-SMA model components. In fact, any increases in ET are balanced by
decreases in total channel inflow across all space-time scales. This result strongly suggests a more
in-depth study of scale impacts on ET and the long-term soil water balance is required. Figures 2-11
and 2-12 further illustrate that SAC-SMA model parameter adjustments can correct for certain biases
created from applying the model at space-time scales for which the parameters are not calibrated.
However, changing model parameters causes a complex and poorly understood redistribution of
water between the various runoff components in the model which results in new volume and timing
biases in both the short-term storm runoff and the long-term water balance.

2.5 Comparison of the SAC-SMA sensitivity to other conceptual models

The previous sections showed that the SAC-SMA model runoff components were sensitive
to spatial scales of the Stage III precipitation inputs., To understand how the scale dependency
relates to the model structure, and if the SAC-SMA model is an unique case of scale dependency,
a similar analysis was performed with a few other conceptual models.

2.5.1. Model scale examples

Historically, less emphasis has been placed on the scale dependency inherent to the rainfall-
runoff model as opposed to the scale of rainfall. Analysis of the spatial variability of rainfall can give
a qualitative sense of this scale dependency such as the Representative Elemental Area (REA)
concept, however, quantitative measures of physical scale is highly model dependent. For example,
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the linear rainfall-runoff relationship in Equation 2-1 is not sensitive to the spatial variability of
rainfall given that the spatial averages of rainfall preserve the total volume of precipitation.

RP=a(nP, 2-1)

where R,® is runoff averaged over an area 4 using scale k estimates of runoff, P, is a mean areal
rainfall, and o(t) is the scale independent parameter for the rainfall-runoff relationship.

The rainfall-runoff model, however, becomes scale dependent if, for example, its parameter is a
linear function of the rainfall rate:

R,=B(0)P, P, = B(t) P} | (2-2)

Runoff from an area 4 (say, a river basin) can be aggregated from runoffs simulated at a finer scale,
R

i

' N
— 1 k
RP=—3 R" (2-3)
Nk i=1

where Ny is a number of k-scale elements in the area 4. Combination of Equations 2-2 and 2-3 leads
to

N,
RY =) Niz} (PO = BB [(0®) + (PP 2-4)
ki=

where o® is the spatial standard deviation of rainfall averaged over scale k, and P™ is the mean
value of k-scale rainfall that is equal to the rainfall averaged over an entire area, P,. For a scale
independent unbiased model the right sides of Equation 2-4 should be equal at any scale less than
the area 4. It leads to a relationship between the model parameter B®(t) at different scales. Simple
equation can be drawn after substituting a coefficient of rainfall variation, C,"9, instead of a standard
deviation

w2
Bk =y — )

2-5
1y =

Equation 2-5 shows how to preserve a constant average runoff over an area 4 by adjusting
the model parameter f®(t). The adjustment depends on differences of rainfall variability at different
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scales. The results of an analysis of 3 years of high resolution (4x4 km) radar precipitation estimates
over a 256x256 km region in the southern plains of the United States shows that the coefficient of
spatial variation of precipitation differs significantly at different averaging scales. As a result, the
model parameter B®(t) will vary greatly from scale to scale. Figure 2-13 plots the ratio of
BLO/BO() versus LY/L® where L is the finest resolution of the radar estimates (4x4 km), L®
is the k-scale, B is the coefficient at the finest resolution, and B® is the coefficient at the k-scale.
Figure 2-13 clearly illustrates that the coefficient in Equation 2-2 changes significantly from scale
to scale.
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2.5.2 Hydrologic models analyzed

This study is focused on comparative analyses of scale dependency of lumped hydrological
models with different formulations of the infiltration processes. Three lumped hydrological models
of differing complexity were used in the study: the SAC-SMA model, the Oregon State University
(OSU) multi layer model (Mahrt and Pan, 1984), and the Simple Water Balance (SWB) model
(Schaake et al., 1996). The first two models are typical point models that do not account for the
spatial variability within the basin. The SWB model implicitly accounts for the spatial variability
in precipitation data and model states. A fourth model, a reformulated version of the SAC-SMA
model which accounts for the spatial variability of rainfall, was also analyzed.

2.5.2.1 The OSU Model.

The OSU model was used as the land surface hydrologic parameterization in the Oregon
State University one-dimensional planetary boundary layer model (Ek and Mahrt, 1991). The model
is based on the finite difference solution of the one-dimensional Richards' equation (Dingman, 1993)
in the multi-layer vertical soil column. The Richards' equation is a physically based infiltration
model derived from Darcy’s law under the assumption of an isotropic, homo geneous soil column.
Surface runoff is calculated under the assumption of the Hortonian, infiltration-excess, type of
rainfall-runoff partitioning,

R =max{(P-1_ )0} (2-6)

max

A maximum infiltration rate, /,,,,, is estimated based on the water flux at the soil surface:

®, -0, @-7)

[,.=D@®) +K(©,)

where D(®,) and K(®,) are the soil water diffusivity and conductivity under conditions of saturation,
®,, Az is the upper layer thickness, and ©, is the water content of the upper soil layer, usually 5-10
cm. Two to ten layer versions of the model were used in the analyses.

The OSU model explicitly accounts for the effect of vegetation on evapotranspiration by the
inclusion of the canopy resistance scheme. However, it does not account for the effect of spatial
variability in hydrologic variables. Most of the parameters in the OSU model are usually derived
using the soil and vegetation classification information (Chen et al., 1996). However, a few
parameters have to be adjusted if the model is applied to a specific river basin.
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2.5.2.2 The SWB Model.

The Simple Water Balance model (SWB) has a two-layer structure with both a physical and
statistical basis for the model parameters (Schaake et al., 1996). A thin upper layer consists of the
vegetation canopy and the soil surface. A lower layer includes both the root zone of the vegetation
and the ground water system. Capacities of each layer are model parameters. The supply of water
to the lower zone is the excess of precipitation from the upper layer, P, ... This water is available
for partitioning into surface runoff and infiltration into the lower layer. The surface runoff equation
was derived based on probabilistic averaging of the point infiltration-excess equation, assuming

R P ezxcess
s= - (2-8)
Pexcess +D LZ (1 -€ b dt)

exponential distribution functions of precipitation and soil moisture capacity,

where D, is a water deficit of the lower zone, df is the simulation time step, and K, is a model
parameter that accounts for the temporal scale. The model has five parameters which are calibrated
using historical data.

2.5.2.3 Reformulated Sacramento Model.

The SAC-SMA model was reformulated in order to account for the spatial variability of
rainfall. The reformulated Sacramento model (REF-SAC) replaces actual patterns of rainfall at the
river basin scale with a distribution function of rainfall. Mean areal excess rainfall can be estimated
assuming that Equation 2-6 applies at any point in a basin, the upper zone tension water deficit is
uniformly distributed over the basin, and only rainfall is spatially variable,

o

ﬁexcess = f A(P_Z_) UZTW)f(P)dP (2'9)

DUZTW

where f{P) is a distribution function of rainfall. Figure 2-14 graphically shows the meaning of the

reformulation where the SAC-SMA produces zero excess rainfall and therefore zero surface runoff,
if the mean areal rainfall of 29 mm is less than the upper zone tension water deficit of 41 mm.
However, the reformulated version produces some amount of excess rainfall (shaded area in Figure
2-14) depending on the distribution function of rainfall. The same assumptions were used to estimate
mean areal surface runoff from Equation 2-7 with an additional assumption that point excess rainfall
has the same distribution function as rainfall.
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To apply the REF-SAC model, a spatial distribution function of rainfall must be estimated
at each time step where SWB model assumes the distribution function to be constant in time. High
resolution radar data provides the best available information about the spatial distribution of rainfall
which allows the precipitation distribution function to be estimated at every time step. This
approach is impossible to apply using only conventional land based rain gage networks because the
spatial structure of the precipitation over headwater basins is not adequately sampled by gage
networks. An analysis of the spatial variability of hourly Stage 3 precipitation grids indicates that
a gamma distribution can be used as an approximation to the empirical distribution (Koren, 1993;
Schaake et al., 1996),

AY 4
P) = PV 1a -AP B
f(P) —I'(v) e (2-10)

where A and v are the distribution function parameters which can be estimated using mean areal
precipitation and coefficient of variation, C, ,. The distribution function parameters were estimated
for each time step using only the radar bins with measured rain within the simulation area. Simulated
excess rainfall and surface runoff were multiplied by the percentage of the rainy area to get average
values over an entire basin area.

2.5.3 Results and discussion

2.5.3.1 Comparison of different model results.

Runoff components generated by each model (a ten layer version if the OSU model was used
in this test) were cumulated for the entire period and averaged over the test area, 256x256 km. Figure
2-15 is a plot of the relative change in the surface runoff volume simulated by the different models
over the 3 year period as a function of the grid scale. Surface runoff changes at each grid scale are
defined as the difference between the total cumulated surface runoff at that scale and the total
cumulated surface runoff at the finest scale (4x4 km). These changes have been scaled relative to the
total cumulated surface runoff generated at the finest scale.

Table 2-2. Averaged hourly values of rainy area fraction and coefficient of rainfall variation at
different grid scales

Scale, km? 4x4 8x8 16x16  32x32  64x64 128x128 256x256
Coefficient of 2.07 1.99 1.85 1.63 1.30 0.85 0.00
variation
Covered area, % 100 98 95 89 79 64 45
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Figure 2-15 shows that each model produced less surface runoff with increasing scale
size. Surface runoff is gradually reduced within the range of 20% till the scale of 32x32 km. At
scales greater than 32x32 km there is a faster reduction in surface runoff with a wide range of
variability from one model to the other. The main factor governing runoff reduction at the
smaller scales is rainfall variability over a rainfall averaging area. At the larger scales, the rainfall
coverage becomes the major factor controlling runoff reduction. As seen in Table 2-2, area
covered by rain was less than 50% at the largest scale. The rainy area fraction in the table was
weighted by the rain rate, while averaging for the total test period. The coefficient of rainfall
variation at the larger scales were about two times less than the coefficient at the finer scales.

The scale dependency of simulated surface runoff is inherent in the model structure due to
the model’s method of partitioning rainfall into runoff and losses. The OSU model is the most
scale dependent with surface runoff reduction close to 100% at the largest scale. The reason for
this is that surface runoff in the OSU model is generated by excess rainfall above the soil
moisture flux on the soil surface, which is estimated as a ratio of the soil moisture gradient, as
shown in Equation 2-9. Excess rainfall can vary significantly over an area depending on the
rainfall rates which differ significantly across scales. The SAC-SMA model showed much less
scale dependency than the OSU model. The surface runoff calculation in the SAC-SMA model is
a saturation-excess type. There will not be any surface runoff (excluding a small amount of
runoff from impermeable areas) generated prior to the fill-up of the tension and free water
storages of the upper zone. The rainfall rate will not affect surface runoff during the first phase of
runoff when initial rainfall losses are generated. This will reduce scale dependency of the total
flood runoff simulated by the SAC-SMA model on the rainfall rate compared to the OSU model.

As expected, the SWB model was less scale dependent then the SAC-SMA and OSU
models because its infiltration equation implicitly accounts for the spatial variability of rainfall.
However, reduction of surface runoff at the larger scales exceeded 30%. One of the reason for
this reduction at the larger scales was that the areas covered by rain were significantly reduced at
the 128x128 km and 256x256 km scales, 0.64 and 0.45 respectively. Where as Table 2-1 shows,
the finer 4x4 km and 8x8 km scales have 1.0 and 0.98 covered areas respectively. The SWB
model assumes that rain covers the entire area and this assumption is clearly violated at the larger
spatial scales.

The reformulated SAC-SMA model was found to be the least sensitive to grid scale. At
the largest scale of 256x256 km the model underestimated surface runoff by about 20%
compared to 60% by the original SAC-SMA model. Because the spatial distribution of rainfall
and rain coverage were estimated at each time step, the reformulated SAC-SMA model produced
more reasonable results over a wide range of spatial scales.
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As seen in Figure 2-16, all models showed much less scale dependency in total runoff.
Total runoff was calculated as a sum of surface and groundwater flows for the OSU and SWB
models, and as a sum of six runoff components: surface, interflow, primary and supplemental
baseflow, permanent and variable impermeable area flow, for the SAC-SMA model. The total
runoff reduction was about three times less than the surface runoff reduction. The models ranking

% change compared to 16 sq. km. scale

-100 T T T T T 17 I| T T T T LELEL I| T T T T LI Il] T T T T L
1E1 1E2 1E3 ’ 1E4 1E5
Grid scale, sq. km.
—®— SAC-SMA —— OSU (10 layers)
—— SWB —— Reformulated SAC-SMA

Figure 2-15. Scale dependency of surface runoff, simulated by different models, and
expressed in percent change in surface runoff as compared to the finest scale value.
Statistics are aggregated for all synthetic sub-basins in the test area continuously over 3.5
year period

based on the scale dependency of total runoff were close to that based on the surface runoff
dependency order: the OSU model was the most scale dependent, and the reformulated SAC-
SMA model was the least scale dependent. The only difference was that the SAC-SMA model
became a little less scale dependent than the SWB model. There is less scale dependency in the
total runoff because surface and subsurface components usually change in opposite directions as
the scale increases. That is, the surface runoff decreases at the larger scales while the subsurface
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Figufe 2-16. Scale dependency of total runoff simulated by different models. Total runoff
is less sensitive to scale than surface runoff shown in Figure 2-15.
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component increases. The SAC-SMA model multi-interaction between runoff components
reduces the effect of the surface runoff scale dependency in the total runoff significantly.

2.5.3.2 Rainfall-runoff partitioning in the SAC-SMA model.

The importance of the rainfall-runoff partitioning mechanism was seen during flood
events. Figure 2-17a is a plot of the runoff coefficient during a specific flood event, April 12,
1994, simulated using total channel inflow from the SAC-SMA model outputs at different grid
scales. The runoff coefficient is defined as the ratio of accumulated runoff to accumulated
precipitation, for a given time interval. At the beginning of the flood, when initial losses are
satisfied, the runoff coefficient is rather stable and does not vary much from scale to scale. Once
initial losses have been satisfied, the runoff coefficient varies significantly over different scales
with the highest values at the finest scale. Most of the rainfall during the storm was stored in the
soil at the 128x128 kim scale, and the runoff coefficient was close to zero during the entire flood
event. As a result, soil moisture content increased during the flood and was the greatest for the
lowest resolution as shown in Figure 2-17b.

The reformulated SAC-SMA model showed less scale dependency in rainfall-runoff
partitioning. The range of the runoff coefficient variability across scales was narrower during the
same flood event, as shown in Figure 2-18a. The 128x128 km scale has a higher runoff
coefficient at the beginning of the flood event because of different soil moisture states from the
continuous run. Soil moisture content at the end of the flood was close for all grid scales, as
shown in‘Figure 2-18b.
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2.6 Conclusions

The sensitivity of the SAC-SMA model to precipitation inputs at various space-time
scales while holding the parameters constant was explored by developing a rainfall runoff scale
driver. The results presented were realized when running a continuous version of the SAC-
SMA model in a lumped fashion at many different space-time scales while using mean areal
precipitation inputs derived from gridded Stage III data. At the time of this analysis, a relatively
short period (9 months) of NEXRAD data was available

The SAC-SMA model runoff components were found to be sensitive to both spatial and
temporal scales of the Stage III precipitation inputs. The analysis revealed a general increase in
surface runoff, interflow, supplemental baseflow, and total channe] inflow when moving to finer
spatial scales and maintaining constant hydrologic model parameters. Evapotranspiration
decreased as spatial scale decreased which offset the increase in total runoff in the 9 month
water balance. Decreasing the time scale of the model from 6 hours to 1 hour, while holding
the spatial scale'constant, resulted in a significant increase in surface runoff, interflow, and total
channel inflow. Decreasing the time scale caused a decrease in the supplemental and primary
baseflows.

These space-time scale effects on the SAC-SMA hydrologic model response may be
attributed to the space-time averaging of high intensity, short duration, runoff generating
precipitation events. And this space-time scale sensitivity suggests that potential improvements
to the SAC-SMA model simulations may be possible by using the Stage III gridded precipitation
estimates and modeling at finer space-time scales. Additional research will explore these
possibilities by evaluating the finer resolution simulated hydrographs as compared to observed
hydrographs.

At least for nested synthetic basins of regular size, adjusting model parameters was
shown to be a method for preserving volume biases in a single runoff component when biases
were created from applying the SAC-SMA model parameters to space-time scales for which the
mode] was not calibrated. However, simple parameter changes resulted in a complex exchange
and redistribution of water in other model runoff components and cannot account for space-time
scale effects on the overall volume, timing, and shape of the SAC-SMA runoff hydrograph.

The results presented highlight the need for a greater understanding of the space-time
distribution of SAC-SMA model parameters. The analysis indicated that parameters derived at
a given space-time scale cannot be applied at different scales without introducing significant
runoff volume biases. These biases were displayed in the redistribution of runoff volume
between fast and slow response components, as well as between near surface and groundwater
response. All results presented must be viewed according to the fundamental assumptions and
limitations of the analysis and may vary geographically.
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Comparative analysis showed that all selected models produced less surface and total
runoff, and more evapotranspiration with increasing scale size. Rainfall variability was a primary
factor of runoff reduction at the smaller scales, and rainfall coverage became a major factor at the
larger scales. Although all selected models were scale dependent, the level of dependency varied
significantly with different formulations of the rainfall-runoff partitioning mechanism. The point
type OSU model with a pure infiltration-excess mechanism was the most sensitive to the rainfall
spatial variability. The better representation of the soil moisture profile by using more soil layers
did not reduce scale dependency. Mixed saturation/infiltration-excess type models, such as the
original and reformulated SAC-SMA models, were less sensitive to the scale. The rainfall rate
induced scale dependency of the fast runoff components on the rainfall rate was reduced
significantly during the first phase of flood when a saturation-excess mechanism was dominated.

Probabilistic averaging of the point processes reduces scale dependency, as demonstrated
by the SWB and reformulated SAC-SMA models. Effectiveness of the probabilistic averaging
varies depending on the scale, and was reduced with increased scale size because rainfall coverage
and rain area locations became an important factor. Continuous assimilation of a distribution
function of rainfall and rainy area fraction significantly reduced scale dependency of the SAC-
SMA model at the larger scales.

All models showed less scale dependency in total runoff compared to surface runoff
because surface and subsurface runoff components usually changed in opposite directions as the
scale increased. That is, the surface runoff decreased at the larger scales while the subsurface
component increased. It suggests that neglecting the subsurface-groundwater component by
compensating it in a surface runoff component can lead to an increase in the model scale
dependency.

The analysis was focused on the scale dependency of different models rather than on their
performances compared to measured data. If well calibrated, a more scale dependent model may
give better results at the applied scale basin than a less scale dependent model. Importance of the
scale sensitivity of the model depends on the specific application. In the local rainfall-runoff
forecasting over dense gauge regions it is important to use a model that showed a high accuracy in
rainfall-runoff simulations, and could be calibrated properly using historical data. Less scale
dependent models are desirable when rainfall-runoff simulations are performed over large
ungaged regions and there is a need in transferring of model parameters from different size basins.
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3. Comparison of Mean Areal Precipitation Estimates
from NEXRAD Stage III and Operational Raingage Networks

3.1 Operational MAPX vs. Operational MAP

3.1.1 Problem Description

Until recently, precipitation input for operational forecasting has been based solely on point
rain gage measurements that are converted into mean areal precipitation estimates. With the
nationwide advent of the Weather Surveillance Radar - 1988 Doppler (WSR-88D) systems known
as Next Generation Weather Radar (NEXRAD), the NWS and others have the opportunity to use
hourly 4 km precipitation estimates for hydrologic modeling (Hudlow, 1988 ; Klazura and Imy,
1993). As outlined in Chapter 1, one of the approaches to using Stage III data to improve simulation
accuracy is to perform lumped modeling with MAPX data as input.. One aspect of this investigation
is to understand the differences between rain gage-derived and radar-derived estimates of mean areal
precipitation, since often both are used for operational forecasting in the same basin. In addition, one
of the assumptions regarding Stage III data is that long term areal means defined using gridded radar
estimates and rain gage point estimates are the same.

A review of the literature indicates that differences between MAP and MAPX do exist. In
an early study, Smith et. al (1975) noticed a general underestimation of daily mean areal rainfall
derived by radar compared to that derived from a raingage network. Barge et. al (1979) compared
raingage and radar- derived mean areal rainfall estimates for a 6 day storm sequence. They were
clearly able to identify causes for large differences in the two estimates. Collier et. al (1975) were
able to show that the addition of rain gages used in calibrating radar led to improved estimates of
areal rainfall. For a 7 month period, Finnerty and Johnson (1997) compared MAP values derived
from the NCDC gage network with MAPX values for several basins near Tulsa, Oklahoma. Their
findings indicated that the mean areal precipitation estimates derived from NEXRAD are biased low
compared to gage-derived estimates. Borga et. al, (1995) compared several radar derived mean areal
estimates with several gage products. In streamflow simulations limited to one storm event, they
investigated the hydrologic impacts of the differences in the mean areal products. Goodhew and
Mylne (1992) compared daily mean areal estimates from various density gage networks to those
based on data from a single radar. Their analysis spanned a two year period. Agreement between the
two estimates was found to vary with distance from the radar, amount of gage recorded precipitation,
radar calibration, and location under the radar umbrella. In their experiments using a single event
model, Kull and Feldman (1988) found that at least on one occasion, radar-based runoff simulations
were well below those of the observed data. Finnerty et. al (1997) found that parameters for the
SAC-SMA are strongly linked to the temporal and spatial scale of precipitation forcing, implying
that hydrologic model parameters calibrated from raingage networks may not be suitable for use with
the gridded NEXRAD data.



In light of these findings, it is important that the two estimates of precipitation forcing be
understood. Two objectives of this investigation are identified: 1) to examine the statistical
differences between radar derived and gage derived estimates of mean areal precipitation, and 2) to
investigate the potential impacts of these differences on streamflow simulations generated with a
hydrologic model commonly used within the National Weather Service.

This initial study is not aimed at investigating the accuracy of the two mean areal
precipitation products themselves, but rather to provide a comparison. Differences in these products
will undoubtedly have implications on calibrated parameters, mean areal precipitation estimates, and
climate and hydrologic modeling.

3.1.2 Methodology

The Tulsa River Forecast Center was chosen as the site for these comparisons for several
reasons. This area has the longest archive of radar data available and it has a relatively dense
raingage network in comparison to some areas of the country. In addition, there are a number of
unregulated headwater basins already being modeled by the ABRFC. The density of the raingage
network is in reference to the operational gages and the network of gages used in producing the
Stage II radar precipitation estimates. The basic framework of the methodology includes : 1) Obtain
operational 6-hour MAP estimates from the Tulsa River Forecast Center data archives for the period
from 1993 to 1996; 2) From the same 1993 to 1996 period, obtain operationally-derived 1-hour
MAPX’s for the same basins and aggregate to a 6-hour time step; 3) Perform various analyses to
illustrate differences and similarities between the two mean areal precipitation products; 4) Compare
the effects of these inputs on hydrologic simulations produced by one of the hydrologic models used
by the National Weather Service.

3.1.3 Data

A total of 8 basins were used in the study of precipitation comparisons, with 3 of these basins
being subsequently used in the study of the effects of the precipitation products on the hydrologic
simulations. The basins are located mainly on the Oklahoma-Arkansas-Missouri border. Most of
the study area stretches north from Fort Smith up to the Mark Twain National Forest. Figure 3-1
‘provides a location map of the region with the Arkansas River noted as well as the original 8 basins
and several other prominent features of the area. Also shown are the operational rain gages used to
compute MAP values. Table 3-1 provides information regarding the basins.



so8en urey TruoTlviad() puk surseg Apnis§ jo del uworied0] T-§ =2in8Tg
SI9JoWO[TS] UT 91eog arewrxoiddy

09 ov 0T 0

ynws vod @

LINOSSI

Lo
98e3 ures [euonerado

Arepunoq uiseq

Arepunoq a1els

esinL @

BWOYEO

sesuey|

3.3



Table 3-1. Study basin descriptions and relevant information.

No. Basin Name ' Lat./Long. Area
Centroid (km?)

1 FLDO2: Eldon, OK 35.91/94.59 795
2 JOPM7: Joplin, MO 36.9/94.17 1106
3 KNSO2: Kansas, 0K 36.23/94.58 285
4 MLBA4 : Mulberry, AR 35.69/93.72 1103
5 TALO2: Talequah, OK 36.08/94.78 552
6 TENO2: Tenkiller Ferry 35.79/94 .88 894

Dam, OK

7 TIFM7: Tiff City, MO 36.6/94.25 2259
8 WITTO2: Watts, OK 36.12/94.32 1645

3.1.3.1 Operational Gage Network

Each RFC within the NWS utilizes data from an operational network of precipitation gages
to derive MAP values. Details of this procedure can be found in National Weather Service (1993).
Gages in the operational network report at a variety of time steps, most commonly 1, 3, 6, and 24
hours. In general, rainfall reports from different gages are accumulated to derive 24 hour totals.
Missing gage data is estimated from surrounding gages using a 1/d* weighting procedure, where d
is the distance between the estimator station and the station being estimated. A daily MAP value is
computed using one of several weighting options, the most common being a Thiessen polygon
method. Daily MAP estimates are then distributed into 6 hour periods based on the precipitation
values of the recording gage closest to the centroid of the basin in each of 4 quadrants. Figure 3-1
shows the location of the operational gages in the ABRFC operational network.

This product may or may not be exactly reproducible, due to changes in the operational gage
network; however, it is noted that it is considered to be an accurate representation of the precipitation
based on the gage network operating at the time.



3.1.3.2 Stage III Precipitation

MAPX products are derived from the gridded hourly Stage III precipitation estimates. A
brief description of the NEXRAD products is provided here. Additional information can be found
in Finnerty et al. (1997), Shedd and Fulton, (1993), Seo and Johnson, (1995), and Fulton et. al
(1997). The NEXRAD product used in this work begins with the raw reflectivity data produced from
the radar sites. This raw reflectivity is transformed into precipitation estimates by using a
“reflectivity-rainfall” relationship, also known as a “Z-R” relationship. This is now known as the
Stage I product and there are known errors in these precipitation estimates (Smith and Krajewski,
1994; Seo et al., 1995; Smith et al., 1996). An attempt to account for these errors results in the
processing of the data by utilizing “ground truth” gage measurements to remove a mean-field bias
in the radar precipitation estimates, the resulting product is known as a Stage II product. Finally,
the estimates are merged with overlapping radar fields in a gridded system known as the NWS
Hydrologic Rainfall Analysis Project (HRAP) to form a Stage III product (Greene and Hudlow,
1982). The HRAP projection system is a polar stereo graphic projection grid. The grid size varies
with location because of the non-equal area projection, but is approximately 4x4 km?. The merged
data is often referred to as multi-sensor HRAP precipitation estimates or HRAP precipitation
estimates. Essentially one can think of Stage III products as radar derived distributions “warped”
to match gage recorded precipitation values.

Stage III is the final radar product of an RFC and reflects enhancements and corrections
made by a “hydrometeorological analysis and support” (HAS) forecaster at the RFC. The HAS
forecaster checks the Stage III products and analyzes the meteorological system which is responsible
for the precipitation. The HAS forecaster may then correct or alter the Stage III product if it is
believed that the radar or gages used in the Stage II product are erroneous. Hourly MAPX values
are computed from the Stage III data as a spatial average of all the gridded precipitation
measurements over a particular basin.

Both the operational MAPs and the MAPXSs are considered by the NWS to be very reliable
real-time mean areal precipitation estimate over the basin, having been derived from two unique
sources of data. Time series of over 4,000 MAP/MAPX pairs for each of the basins were derived for
analysis.

3.1.4 Results

In these results, we present a variety of data comparing gage based MAP’s and MAPX
products. Cumulative amounts for both the MAP and MAPX estimates are compared, as well as
monthly and seasonal totals. Additionally, a number of storms were investigated. The arrival times,
storm totals, storm distributions, and return periods were investigated. Because of the large amount
of data, the findings are summarized and specific examples are provided to illustrate the general
results.



Summary of Results

1) Long Term Cumulative Sums - The gage based MAP’s tend to be higher than the radar based
MAPXs. This is true to varying degrees for most of the basins investigated. The basin KNSO2 had
cumulative MAPX values that tended to be only slightly higher than the MAP values for most of the
study period, while MLBA4 and TIFM7 had fairly good agreement between MAPX and MAP
values over the course of the study period. The remainder of the basins have the MAP values being
higher most of the time. This result was found by summing the MAP and MAPX values for each
month over the study period and calculating the monthly MAPX/MAP ratios. Table 3-2 presents
the average of the 40 monthly rations for each basin. In some of the basins the ratios are closer than
others, but on average, the MAPX’s are 5 to 10% less than the MAP’s. Exceptions to this are the
basins KNSO2, MLBA4, and TIFM?7, for which the MAPX/MAP ratio fluctuated over the period.
The underestimation would seem to be a logical extension of the results found by Smith et. al (1996)
whose gage-radar bin intercomparisons suggested a systematic underestimation relative to gage
observations.

Table 3-2 - Average ratio of MAPX values to MAP values.

BASIN MAPX/MAP
NAME

ELDO2 0.901
JOPM?7 0.955
KNSO2 1.153
MLBA4 1.014
TALO2 0.941
TENO2 0.93
TIFM7 1.012
WTTO2 0.961

Also, overall biases or differences in precipitation amounts were calculated by summing total
precipitation over the study period for each year and for the season from May 1 to October 31. This
season was selected because of known precipitation estimation errors by the radar in the winter
months (Smith et al., 1996). These results are illustrated in Table 3- 3. Note that most of the total
bias is achieved in the season from May 1 thru October 31, which is not terribly unexpected as most
of the precipitation occurs in these
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months. The overall average bias is 5.4% (MAPX being less than MAP). This is very promising
at first glance, but is not entirely true, as will be discussed.

2) Monthly Precipitation - - The conditional average monthly precipitation for the MAPX values
is higher than the MAP values. While the gage based MAP’s tended to produce higher monthly (and
storm totals), the MAPX’s tended to report fewer increments of precipitation. There were exceptions
to this, but in general this tended to be the case. F igures 3-2, 3-3, and 3-4 illustrate the average 6
hour mean precipitation (conditioned on the occurrence of precipitation) for the gage and NEXRAD
based estimates over the study period for basins WTTO2, ELDO2, and KNSO2 respectively..
Basically, the radar estimates show the storm events occurring in much fewer intervals. Thus,
ignoring the underestimation problems of the radar and given cases where the radar and the gages
predicted the same depth of rainfall, the radar estimates tended to be more intense and less spread
out. Also, it was found that the radar data often showed rainfall as occurring earlier than did the gage
data even at these 6 hour increments. Ongoing investigations using 1-hour data show this occurs
much more frequently at this smaller time step, which is expected (Finnerty and Johnson, 1997).

The results presented in Figures 3-2, 3-3, and 3-4 could be the result of two factors. First,
the operational gage network for deriving MAP values is different than the gage network used in the
processing of the NEXRAD estimates to derive MAPX values. Hourly, 3-hourly, 6-hourly, and daily
rain gage reports are used in the MAP algorithm, while predominately hourly gages which report at
the top of the hour are used in the processing of NEXRAD data. Second, the strategies used to
define a 6-hour MAP and MAPX estimates are quite different. As described earlier, in the MAP
algorithm a 24 hour MAP is derived from the various reports, and then distributed into four six-hour
periods based on the temporal distribution of precipitation at nearby stations. This strategy may tend
to spread out the precipitation. If suitable data at nearby stations cannot be found, then the 24-hour
MAP value is uniformly distributed over four 6-hour periods. For example, for basins WTTO2 and
ELDO?2 between April, 1993 and November, 1996, 71 and 60 cases respectively were found in
which a uniform distribution was used. In contrast to the MAP algorithm, hourly MAPX values are
derived from the Stage III data and then aggregated into six-hour MAPX values for use in the
hydrologic model.

These differences will have varying effects on hydrologic models. In the case of continuous
simulation “bucket” models such as the Sacramento Soil Moisture Accounting Model (SAC-SMA),
the effects of precipitation biases are cumulative. Current investigations and experiences within
the NWS show that the SAC-SMA has difficulty in handling some short duration, high intensity
events.

3) No clear trend for this short period could identified in the MAPX/MAP ratios. In general,
MAPX values, as supported by other conclusions in the paper, tend to be lower than MAP values.
Also, most of the basins tended to have several periods where monthly MAPX/MAP ratios were
greater than 1.0. These tended to be in the winter months between November and March. Examples
of this are illustrated in Figures 3-5, 3-6, and 3-7, which depict the ratios of MAPX to MAP for the
WTTO2, ELDO2, and KNSO2 basins, respectively, for the study period. Also shown in these figures
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are percent runoff biases. These bias plots will be discussed in later sections. The MAPX/MAP
value of zero in September of 1993 is due to missing data for that month. The reader may notice a
periodic signal, or time when the MAPX/MARP ratios approach 1.0, occurring during the winter
months for each year. This signal, which is stronger in some basins than others, is the result of the
MAPX values being closer to the MAP values. Note that the MAP and MAPX values tend towards
one another for the winter months and then the average bias accumulates in the period from Spring
to Fall.

This result is contradictory to current theory, which generally indicates that the radar should
more drastically under predict precipitation in typical winter storm systems due to beam overshoot
(Smith et al., 1997). This departure from expected behavior is one of the most significant and
puzzling findings of the study. The overall average biases were on the order of 5% for the 3+ year
study period; however, if the radar is erroneously over predicting in the winter, then the overall
biases would be considerably greater.

While this continues to be investigated, it could be a result of a phenomenon known as
“bright band” reflectivity (Battan, (1973), Collier et al.,(1979), Hopper et al.,(1991)). In short, bright
band reflectivity is caused when a radar beam passes through a zero degree isothermal layer in the
atmosphere. Precipitation above this line is more in the form of frozen particles. As this frozen
precipitation passes through the zero degree isotherm it begins to melt, producing particles or water
coated ice droplets. These droplets are capable of reflecting high levels of energy, thus producing
false echos, which appear as areas of high rainfall.

While bright band reflectivity can occur at all ranges, ranges beyond 50 km from the radar
site have historically used a “bi-scan maximization” technique. This technique essentially utilizes
two beam heights from the radar, selecting the maximum of the two returns for estimating
precipitation (Smith et. al, 1997 ). This technique was used in nearly all of the data of this study.
The bi-scan maximization technique was effectively turned off in February, 1996. It should be
noted, first, that bright band will still be present and algorithms to help detect and reduce this
phenomenon are being studied, and secondly, the bright band reflectivity is present in all NEXRAD
products as it is an artifact of the raw reflectivity. Stage IIl may have this effect reduced as the HAS
forecasters may recognize this occurring in the storm system and correct for it.

Another possible explanation for the winter MAPX/MAP ration to approach a value of one
is that in winter, for frozen precipitation events, personnel at ABRFC often switch to a gage only
field in the processing of the NEXRAD data. In other words, gridded hourly precipitation fields are
constructed from rain gage reports without the radar measurements.

3.1.5 Implications for Hydrologic Modeling
In order to evaluate the hydrologic effects of the MAP versus MAPX differences, streamflow

simulations were performed for 3 of the 7 basins using the two precipitation products as input to the
SAC-SMA. The basins chosen were WITO2, ELDO2, and KNSO2, having drainage areas of 1646,
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895, and 285 km?2, respectively.

As mentioned earlier, the SAC-SMA is widely used within the NWS and interested readers
are referred to Burnash et al.,(1973) and Burnash (1995) for detailed descriptions of the model. In
short, the SAC-SMA is a conceptual model consisting of several tension water and free water
reservoirs representing the active portions of the soil. Deficits accumulated in the tension water
zones must be satisfied before water may move to the free water reservoirs. Fast response surface
runoff is generated after upper zone tension and free water storages are full. Moisture is released
from the free water reservoirs at different rates and summed with surface runoff to derive a total
runoff volume hydrograph. Unit hydrographs are used to transform runoff volumes to discharges.

Parameters for the SAC-SMA for each of the 3 basins were derived through manual
calibration using historical gage-derived MAP time series and observed mean-daily flow from the
U.S. Geological Survey. Statistics from the calibration of the 3 basins in this study appear in Table
3-4 where the percent bias is computed as follows:

N
(S, - 0)
Bias = =— - (100) (3-1)
Oi
i=1
where:
Bias = Percent Bias
= Simulated mean daily flow forced with radar data, cubic meters per second
day (cmsd).
O= Simulated mean daily flow forced with gage data, cmsd.

= Number of discharge pairs

Table 3-4. Calibration Statistics for Three Study Basins

Basin Period %Bias
WTTO2 1971-1992 4.85
ELDQO2 : 1971-1985 4.78
KNSO2 1971-1992 4.85

A slight positive bias was realized in the historical calibration of all three basins.
Nonetheless, it was felt that the parameter sets were acceptable for the generation of simulated flows
using the operational MAP and MAPX time series.
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Streamflow simulations for the three basins were performed for the period October, 1993 to
July, 1996. Two simulations were produced for each basin: one using the MAPX time series and
the other using the MAP values. Model simulations were run using a 6 hour time step. It should be
emphasized that in each of the three basins, the same SAC-SMA parameters were used for both
simulations. Simulated discharge values were averaged to derive a mean daily flow time series in
units of cmsd, facilitating the use of existing NWS software for statistical analysis. Table 3-5
presents the results of these statistical analyses.

The bias statistic in Table 3-5 is computed using the basic form of Eq. 3-1, but modified as shown
in Eq. 3-2:

N
(R, - G)
Bias = —— - (100) (3-2)
Gi

i=1
Bias = Percent Bias
R = Simulated mean daily flow forced with radar data, Cubic meters per second

day (cmsd).

G= Simulated mean daily flow forced with rain gage data, cmsd
N= Number of discharge pairs

The total bias is computed as the difference of the average monthly simulated and observed
flows divided by the average monthly observed flow. It can be seen from Table 3-5 that the
simulations produced from the two input forcings are significantly different on a seasonal basis.



Table 3-5. Percent and Absolute Biases in Monthly Runoff Volumes Generated Using MAP and

MAPX Time Series. Period is October 1993 to July 1996

Basin WTTO2 ELDO2 KNSO2

Month % mm % mm % mm
October -4.2 -5 3.9 0.7 6.1 0.4
November -37.3 -7.2 -38.5 -21.5 -5.0 -0.7
December -49.6 -12.7 -20.9 -7.0 -50.4 -15.0
January 4.9 1.2 -16.1 -8.1 -34.4 6.8
February -17.6 2.2 7.9 1.6 -16.3 1.3
March -16.3 -5.9 -32.6 -24.5 77.6 15.8
April 21.0 8.0 1.1 0.6 102.5 34.8
May 10.0 4.5 -21.7 -13.4 38.8 14.9
June 70.3 13.8 -43.7 -13.8 41.8 133
July 9.1 1.0 -44.7 -8.2 6/9 0.6
August 11.6 1.0 -65.2 -13.1 6.2 0.5
September 8.8 0.6 -36.5 2.1 9.8 0.6
Total 0.5 1.8 -23.0 -108.8 0.7 73.1

Along with the MAPX/MAP ratio, Figure 3-5 presents the runoff bias for each month in the
simulation period for WITO2. The plots in this figure reveal that in general, the runoff volume bias
corresponds to the MAPX/MAP ratio. It can be noticed, however, that the runoff bias lags the
MAPX/MAP ratio for the first few months of the simulation period. For example, Figure 3-5 shows
MAPX/MAP ratios less than 1.0 for October, November, and December of 1993, followed by two
months in which the MAPX/MAP ratio is greater than 1.0. In April, 1994, the MAPX/MAP ratio
climbs to 1.7. Examination of Figure 3-5 shows that while the MAPX/MAP ratio is greater than
1.0 for Jan and Feb, 1994, a corresponding positive bias in runoff volumes does not occur until
April, 1994,

This delayed response of the runoff bias is logical considering the structure of the SAC-
SMA.. In those months in which MAPX values are less than MAP, larger soil moisture deficits are

3.18



created in the radar-forced model compared to the gage forced model. Even though in subsequent
months the MAPX/MAP ratio is greater than 1.0, the larger deficits in the radar forced model require
more precipitation to be satisfied before runoff can be produced.

Figure 3-5 shows that a large runoff volume bias was generated in June, 1995. Examination
of the MAPX and MAP time series reveals that this bias is the result of a single precipitation event
beginning on June 10. As shown in Figure 3-5, NEXRAD measured over 27 mm more precipitation
than did the raingage network. Also, the most intense 6-hour period of rainfall in the MAPX time
series occurred one time step earlier than the most intense period of gage-recorded rainfall.

The plot of the observed and simulated discharge hydrographs in Figure 3-8 reveals that the
MAPX-forced simulation produced much more runoff than the MAP-forced simulation. While
overpredicting the observed discharge, the MAPX-forced simulation is far better than the MAP-
forced case. Examination of the radar rainfall patterns for this event reveal that some parts of the
basin received little precipitation compared to others, implying that the gage network may have
misrepresented the event in a similar fashion to the case discussed by Barge et al., (1979).
Examination of the initial conditions in each simulation revealed no major differences, so that the
simulated hydrographs in Figure 3-8 are the result of the differences in MAPX and MAP.

Results very similar to those in Figure 3-8 were also achieved for an event in January, 1995
in basin WITO?2. Initially, it was not clear whether the good fit produced using radar data was due
to oversimulation of the precipitation due to bright band contamination, or whether the radar simply
captured the precipitation better than the gage network. Subsequent analysis of the Stage III data by
ABRFC personnel revealed that there was no bright band contamination for this event, indicating
that the better simulation was the result of a better estimate of the precipitation
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Table 3-6. MAPX and MAP Values for June 10, 1995 Event in WTTO?2

Date Time MAP Value mm MAPX Value mm
June § 24 8.00 8.61
June 9 6 3.12 1.60
June 9 12 2.62 8.71
June 9 18 0.0 0.03
June 9 24 8.26 5.38
June 10 6 0.02 0.0
June 10 12 0.10 7.26
June 10 18 6.78 33.88
June 10 24 21.18 14.12
June 11 6 0.0 0.0
June 11 12 1.65 0.15
June 11 18 3.33 2.79
total 55.13 82.53




Behavior similar to Figure 3-5 appears in Figure 3-6 for ELDO2. In general, the monthly runoff
biases correspond in time to the MAPX/MAP ratio. In April, 1994 a large bias can be identified.
In this case, the MAPX values for an event on April 5 are almost double the MAP values. As a
result, the MAPX forced simulation exhibited a strong runoff response (not shown here), while the
MAP-forced simulation showed almost hydrograph no rise at all. Observed streamflow records
reveal no significant runoff response for this rainfall event, indicating that the radar greatly
overpredicted the amount of precipitation for this event. From April, 1994 to the end of the
simulation period, Figure 3-6 shows a quite strong negative bias in runoff volumes. This resultis
understandable in that the overall MAPX/MAP ratio of 0.88 indicates less rain detected by the radar.

Figure 3-7 shows the same erratic behavior of the runoff volume:ratio for basin KNSO2 that
was seen for basins ELDO2 and WTTO2. A large bias can be seen for the month of April, 1994,
largely due to the event on April 9-11, in which the radar recorded 81.3 mm of rainfall and the gage
network recorded 35.6 mm. Although not shown here, there is no observed discharge data for this
event, so it is not possible to judge the simulations forced using the two data sources. After this
event, Figure 3-7 shows a general positive runoff bias, which is reasonable considering that the
average MAPX/MARP ratio is 1.15. The large bias in June of 1995 is due to a single event in which
the radar greatly overestimated the precipitation compared to the gage network estimate.

While the purpose of the hydrologic modeling was to compare radar and gage network forced
streamflow simulations with gage-calibrated model parameters, it was nonetheless interesting to also
visually compare both simulations to observed streamflow records for storm events. In some cases,
the MAPX-forced simulations performed better than the gage-forced simulations. However, in
others, either the gage-forced simulations were better or the radar-forcing produced hydrograph
responses that were not seen in the observed streamflow records. More comprehensive testing
should address the issue of the accuracy of stream flow simulations generated by MAPX and MAP
data.

3.2 Comparison of Mean Areal Precipitation Time Series Derived from Stage
III vs. the Historical Calibration Rain Gage Network

3.2.1 Introduction

As in the previous section, the study area is nine basins in the region near the Oklahoma-
Arkansas-Missouri state boundaries. This region was analyzed because of its dense gage
network and the availability of archived Stage 3 radar products. MAP and MAPX time series
were derived for the period from May 7, 1993 through December 31, 1993. This is the period in
which the historical gage and discharge data overlap with archived radar products. The gage
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MAPs were calculated using both the hourly and daily gage accumulations obtained from the
National Climatic Data Center’s 3200 precipitation data. Appendix A shows the gage network
and station weights used by the calibration precipitation preprocessor software called MAP3
which was used to calculate the historical gage MAPs for the 9 basins in the study.

Summary statistics were generated for the 1- and 6-hour case, for all nine basins, and for the
entire 7-month duration of the MAP and MAPX time series. Statistics include the mean,
standard deviation, and coefficient of variation, all of which are conditioned upon the occurrence
of precipitation. The conditional statistics provide information about the ability of radar and
gage networks to detect precipitation, as well as their ability to estimate precipitation intensity.
Cumulative sums for each basin and the percent bias of accumulations from radar vs. gage
networks were also tabulated.

3.2.2 Results

Tables 3-7 and 3-8 show that for the 7-month period, the Stage III MAPX cumulative totals have
a negative bias ranging from -10 to -25 percent as compared to gage MAPs. This long term
under catch of the MAPXs exists for both the 1- and 6-hour cases. The fact that the 6-hour
conditional mean of the MAPX is larger than MAP for some basins is attributed to the spatial
and temporal averaging of point gage measurements to time increments and areas where it is not
raining. This produces rain for time intervals where no rain was occurring, reduces the
conditional mean, and hides the actual cumulative bias that exist at the 6-hour case. MAPX is
approximately 25 percent greater at detecting the temporal variability in the time series than the
gage MAPs, for the 1-hour case. However, the normalized mean (coefficient of variation) shows
that the temporal variability of the MAPs and MAPXSs is nearly equal at the 6-hour time step.
This indicates that the radar’s ability to capture the temporal variability in precipitation time
series at a 1-hour time step is largely lost when averaging to a 6-hour time step.

Figure 3-9 illustrates how the cumulative sum of both the MAP and MAPX time series behave
over the 7-month duration for the TIFM7 basin. Only this basin is shown because all nine basins
exhibited similar behavior. The figure shows how the gages and radar have different estimates of
the volume and timing of individual precipitation events. Figure 3-9 also shows a plot of the
cumulative differences in the MAP and MAPX time series, which highlights the timing and
volume biases of individual storm events for the two rainfall measurements. Both methods
appear to be similar in their estimation of event timing, but a spike appears in the cumulative
difference plot when their timing is off. MAPXs have a lower accumulation even in the summer,
which may be due to averaging point gage measurements over areas where it is not raining. Or,
the radar may simply be underestimating precipitation rates. Radar is generally better than gage
networks at estimating precipitation during high intensity convective storms because of the
radar’s high resolution spatial coverage (Seo and Smith, 1996; Smith et al., 1996).
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Table 3-7 - Conditional Summary Statistics for 9 Basins
Using 1-hour MAP and MAPX Time Series

Basin SUM HOURLY MEAN | HOURLY STD. DV. COEF. of
D (mm) (mm) (mm) VARIATION
MAP3 | MAPX  MAP3 | MAPX E MAP3 | MAPX | MAP3 | MAPX
JOPM7 1207 1040 2.07 1.51 3.26 | 2.160
TIFM7 1104 996 1.48 1.32 2.69 2.020
wrroz I 977 798 1.27 1.04 g 2.68 2111
KNSO2 | 948 837 1.50 141 g 2.67 2.000
ELpoz2 || 10s6 930 1.51 134 | 255 2.176
TaLo2 il 933 839 1.47 1.33 277 2.460
TENO2 979 784 1.62 1.18 2.85 2.460
VBLA4 1055 798 B 173 1.07 2.99 2.128
MLBA4 864 726 3 1.523 1.11 237 2.240
%BIAS=[(MAPX-MAP)/MAP] x 100

Table 3-8 - Conditional Summary Statistics for 9 Basins
nd MAPX Time Series

Using 6-hour MAP a

Basin SUM 6-HOUR MEAN 6-HOUR STD. DV. COEF. of % BIAS
ID (mm) (mm) (mm) ¥ VARIATION of

i SUMS

i MAP MAPX MAP MAPX ! MAP MAPX MAP MAPX
JOPM7 1207 1040 5.51 5.10 9.29 9.52 1.69 1.87 -13.9
TIFM7 | E 1104 996 4.30 4,70 7.90 8.55 1.84 1.82 -9.8
WTTO2 é 977 798 3.60 3.82 6.94 6.89 1.93 1.80 -18.3
KNSO2 | 948 837 435 4.65 7.75 8.32 1.78 1.79 -11.7
ELDO2 1056 930 4.19 4.72 7.68 8.79 1.83 1.86 -11.9
TALO2 933 839 4.15 4.49 E 8.34 9.34 2.01 2.08 -10.1
- TENO2 979 784 4.45 4.15 r8.64 9.02 1.94 217 -19.9
VBLA4 | 1055 798 4.67 3.80 7.69 6.20 1.65 1.63 -24.4
: E 864 726 4.23 3.65 W 658 6.77 1.56 1.85 -15.9
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3.3 Consistency of Stage III MAPX Data

One of the issues for calibrating the Sacramento model is consistency of the precipitation
forcing. Procedures within NWSRFS have been developed for analyzing the consistency of
raingage precipitation information by creating double mass plots of the raingage data. Changes in
the slope of a double mass plot may indicate a station move or other human influence that
inappropriately affects the gage catch. In order for NEXRAD data to be useful for calibration, one
of the criteria is that the data needs to be consistent. Changes in NEXRAD processing and increased
skill on the part of the HAS forecaster may influence the ‘catch’ or consistency of these data.

Over 4 years of hourly MAPX data and 6-hourly MAP data for each of 9 sub basins was
available for evaluation. This period of analysis spanned from June 1, 1993 through the end of July,
1997.  The MAP3 calibration preprocessor was used to derive double mass plots using the
following approach:

1. Each of the archived 6-hour MAP time series for the 9 basins was accumulated to create a 24-
hour MAP time series. Thus, each MAP time series was used to represent a daily precipitation
station.

2. Each of the archive hourly MAPX time series for the 9 basins was treated as an hourly station.

3. The 9 hourly and 9 daily time series were input to the MAP3 preprocessor as “station” data. The
lat/lon coordinates of the approximate centroid of each basin were used as rain gage coordinates.

4. The 9 daily stations were flagged to constitute the group base for consistency plots. Since each
of the MAP time series represents the Thiessen-weighted precipitation measurements of several
point gages, the group base derived in this way represents a large, hopefully stable base.

5. No observation times were provided for the pseudo 24 hour stations.

6. The accumulation of each of the hourly MAPX time series was plotted against the accumulation
of the group base. (Actually, the deviation of each station from the accumulation of the group base
is plotted). The group base for the MAPX time series consists of the 9 MAP time series.

Figures 3-10 and 3-11 display the consistency plots of the MAPX data. While the plots were
made using MATLAB, the format is identical to the consistency plots produced using MAP3.
Positive and negative deviations from the accumulated group mean are plotted on the x axis, while
the accumulation of the group mean is plotted vertically down.

These figures show quite a bit of wobble for each station. However, it must be remembered
that less than 4 years of data are represented in each plot, and that the scale for such a short period
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Consistency of MAPX for TENO2, TIFM7, VBRA4, WTTO2
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may accentuate any deviations. It is not known whether these variations are significant and
persistent. Usual double mass analysis involves 10 times the length of data represented here. In
these two figures there is quite a bit of variation at the beginning of the plot. This may be due to the
missing data in September, 1993 in which the data was lost due to a disk failure. The shortness of
the analysis period makes any conclusions difficult to make. Personnel at ABRFC examined the
consistency plots and could not reach definite conclusions.  Figure 3.3-1 shows that basin MLBA4
displays an apparent increase in accumulation starting at a value of 100 inches. Review by Bill
Lawrence in ABRFC and Eric Anderson indicated that this point might be a potential break point.

Further analysis led to the figures 3-12 through 3-20. In these figures, the deviation of the
accumulated gage map from the group base is plotted with the deviation of the accumulated Stage
III MAPX from the group base. For the gage map, the group base consists of the 9 MAP time series
minus the gage MAP in question.

Once again, any conclusions regarding the consistency of Stage III derived MAPX time series are
difficult to make. The gage MAPs for ELDO2 , WITO2, and VBRA4 appear to be more of a
straight line than the corresponding MAPX plot, indicating that the data is more consistent. For the
remaining figures, it is difficult to state which data might be more consistent.
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MLBA4: Radar and Gage MAP Consistency
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TENO2: Radar and Gage MAP Consistency
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3.4 Conclusions

While much of comparison of MAPX and MAP values continues, some conclusions can be
made at the present time. With regard to overall performance, the Next Generation Weather Radar
system produces viable mean areal precipitation estimates. A problem of inconsistency is identified;
however, the level to which these inconsistencies will affect hydrologic and climatologic models has
yet to be determined.

Compared with gage only estimates of mean areal precipitation, the radar produces slightly
lower values. This may effect climate and hydrologic models that rely on this data for calibration.
We have shown that in the southern plains region, which has a relatively dense network of raingages
and multiple overlapping radars, the radar estimates are approximately 5% to 10% lower than the
gage estimates, after correction by NWS HAS forecasters. If historical gage networks are used to
calibrate models, then use of the radar products may affect the model outcomes. The overall affect
of this on NWS models is being investigated.

The bias appears to change throughout the year. Bright band reflectivity appears to be a
contributing factor in apparently reducing the bias during certain periods of the year, thus caution
should be applied when using data from months that may characterized by this climatological effect.
Also, the bias appears to be decreasing (at least in Stage III products) as forecasters learn to better
utilize and correct the radar. Again, it should be noted that Stage I precipitation products may also
contain this bright band contamination and that Some Stage III products may have been corrected
for this affect. Also, the removal of the bi-scan maximization may affect future winter results,
producing some inconsistencies in the overall Stage III archives.

We have compared two operational products of the National Weather Service Tulsa River
Forecast Center. Some of these products, particularly the NEXRAD precipitation products are
available to the public. It is hoped that this work will provide some guidance for proper usage.
Statistical differences in the MAPX and MAP time series resulted in significant impacts on
streamflow simulations. Large biases can result in both runoff volumes and peak flows for certain
events.

As one might expect, overall biases in runoff volumes correspond to biases in input forcing.
For example, the long term MAPX/MAP ratio for basins WTTO2 and ELDO2 are 0.96 and 0.88
respectively, which lead to percent biases in the runoff volumes of 0.5 and -17.5. A percent runoff
bias of 33.0 for basin KNSO2 resulted from the MAPX/MAP ratio of 1.04. Even larger monthly
biases were seen in the simulations of the 3 basins. Inconsistent behavior was noted when storm
events were examined. At times, the radar derived mean areal estimates of precipitation led to better
streamflow simulations. At other times, the radar derived estimate led to simulated hydrograph
responses that were not evident in the observed discharge records.

In comparison to MAP values derived from the historical network for model calibration, MAPX has
a negative bias in the 7-month accumulations for all nine basins analyzed. The 1-hour MAPX
detects more precipitation variability than the gage MAPs, but this effect was minimized when
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averaging to a 6-hour time step. There are clear differences in each method’s ability to estimate the
timing and volume of individual events; however, no clear trend exists for all events. This suggests
that hydrologic forecasting may benefit from having both measurement systems available to
hydrologic forecasters, from which they can choose. Further analysis is required to evaluate what
impact these differences between calibration MAPs and MAPX model inputs may have on
operational hydrologic forecasting.

It is important the differences in long term means of the MAP and MAPX be resolved In the
examples presented, the SAC-SMA was calibrated for 3 basins using multi-year MAP time series
derived from an historical gage network. Use of these parameters may lead to sub-optimal
simulations when forced with radar precipitation measurements or data from the operational gage
network. It has long been assumed in the NWS that the MAP time series used for calibration are
unbiased compared to MAP time series derived from the operational gage network as well as Stage
IIT derive MAPX values. Further research should be performed to include a comparison of MAPs
from the calibration network with the operational MAPX and MAP values. Additional hydrologic
simulations should be performed after recalibration for use with one of the operational precipitation
estimates.

Efforts are underway to enhance the bias correction algorithms in the processing of the
NEXRAD data (Miller et al., 1998). Improvements to the mean field bias correction algorithm in
Stage II allow for the inclusion of considerably more gage reports to be utilized in real time than
the existing method by eliminating a gage-to-gage distance dependency requirement. In addition,
a memory span parameter has been added to the mean field bias correction equation. A user
specified value, this parameter allows the bias to consider a moving window of past gage-radar
readings. (Breidenbach et al., 1998). When the memory span value is large, the bias approaches
climatology. When the memory value is small, then the bias computation can respond quickly to
the current sample bias.

A new procedure has been developed for the Stage II local bias adjustment as well. An
optimal estimation procedure has replaced the original distance-weighted scheme for the adjustment
of radar values near rain gage locations (Seo, 1997). Improvements have also been made in the
estimation of rainfall values in areas covered by two or more radar umbrellas. Previously, the mean
of all the estimates in the overlapping area was used. An option has been created in which the
maximum rainfall value and not the mean can be used as the final value.
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4. Numerical Experiments on the Sensitivity of Runoff to Level of Basin
Disaggregation

4.1 Introduction

Sensitivity analyses using high resolution radar precipitation estimates in Chapter 2 pointed
out that the Sacramento Soil Moisture Accounting Model (SAC-SMA) is sensitive to spatial scale.
The fast runoff components, especially surface runoff, may be underestimated significantly if the
model is calibrated at one scale and is applied to an other scale. Hillslope/Channel routing processes
can also introduce discrepancies in an outlet hydrograph. To account for the spatial variability of
rainfall and to reduce scale dependency, a semi-distributed approach is proposed here. However, a
strategy of disaggregating a basin into an optimum number of sub-basins is not well defined.

Numerical experiments were conducted to get a quantitative estimate of simulated
hydrograph sensitivity to sub-basin area. The SAC-SMA model was used to estimate the water
balance components including total channel inflow. A linear distributed hillslope/channel routing
reservoir type model (Koren and Barrett, 1994) was used to route total channel inflow through
hillslope/channel reservoirs. It was assumed that the SAC-SMA and routing model parameters are
uniformly distributed over the test area. The test area was located in the Red River basin over the
Oklahoma-Arkansas border the eastern portion of the Tulsa RFC, Oklahoma. Input to the SAC-
SMA model was gridded hourly precipitation estimated by NEXRAD with a resolution of
approximately 4x4 km and monthly climatological potential evaporation averaged over the entire
test area. The NEXRAD data set spans a 3 year period from May 7, 1993 through July 31, 1996.
Nine headwater basins with areas from 329 km* to 4200 km? were selected for this study.

4.2. Disaggregation of Basins into Sub-basins

Software was developed to disaggregate a basin into a number of sub-basins based on the
stream channel] structure (cell-to-cell connectivity). The test area was gridded into rectilinear cells
of approximately 4x4 km in size (HRAP projection), which match those of radar rainfall data. The
connectivity of each grid cell was determined based on both digitized stream network and 30 arc
second elevation data. As a result of this analysis, the connectivity file was created that consists of
HRAP coordinates of each grid cell and a sequence number of the next connected grid cell.

Any basin defined in the connectivity file can be broken down into a number of sub-basins

depending on a user-specified sub-basin threshold area. Sub-basin areas will vary around the desired
area, and will depend on the stream channel topology.

4.3. Routing of Total Channel Inflow

Output from the SAC-SMA model, total channel inflow (TCI), was routed through the
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connected grid cell network using a linear reservoir-type model. It is assumed that each grid cell
consists of two reservoirs: a hillslope reservoir and a channel reservoir. The hillslope reservoir
is the source of water for the 'main' grid channel reservoir. It is also assumed that all total
channel inflow of a pixel reaches the 'main' channel reservoir of that pixel. The 'main' channel
is the only source of water exchange between neighboring pixels. A linear reservoir routing model
is used to route runoff within each cell to the stream (hillslope routing), and to move water from
one grid cell to another (channel routing). Two parameters have to be defined to run the model:
hillslope and channel reservoir lag times. In this study these parameters were estimated based on
an existing unit hydrograph at the headwater basin outlet and the channel connectivity. The output
of the routing can be a hydrograph at the outlet of any grid cell.

4.4. Numerical Experiment Description

Each headwater basin was disaggregated into a number of sub-basins for seven defined
simulation scales based on threshold areas, as shown in Table 4-1.

Table 4-1. Sub-basin definition at different scales for the selected headwater basins

in Tulsa RFC
Sub-basin threshold area, sq.km

Basin 60 100 150 250 350 500 800 Lumped
KNSO2| 66| 5| 164| 2 329 1
ELDO2| 68| 12| 102| 8| 164 5[ 273| 3| 410f 2 819| 1
MLBA4| 70| 13| 102| 9| 152| 6| 229| 4| 305| 3| 457| 2 914| 1
VBLA4| 60| 19| 104| 11| 143| 8| 228{ 5| 381 3| 571 2 1142] 1
JOPM7| 66| 18 99| 12| 148 8| 296 4| 394| 3| 592 2 1183] 1
BMTA4| 76| 16| 110| 11| 173| 7| 242| 5| 403 3| 605 2 1210] 1
WTTO2| 73| 22| 107| 15| 161| 10| 268| 6| 403| 4| 537 3| 805| 2[1611}1
TIFM7 68| 32{ 104| 21| 156| 14| 243| 9| 438| 35| 547 4| 729/ 3|2188| 1
TENO2 120] 35 280| 20| 420] 10 4200 1

Mean 68 112 158 257 394 552 817 1510

Note: No. is a number of sub-basins in a headwater basin.
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Two types of the numerical experiments were conducted at each simulation scale: 1) Rainfall
averaging when the SAC-SMA input, rainfall, was averaged over each sub-basin, and 2) TCI
averaging when the SAC-SMA output, total channel inflow (TCI), was averaged over each sub-
basin.

Rainfall averaging was used in the combined study of water balance and routing process scale
dependency. Simulations were performed for different sets of sub-basin definition, Table 4-1, from
one lumped basin to 40-50 sub-basins with average area of 60 km?. The SAC-SMA model was run
for each sub-basin using rainfall averaged over that sub-basin. Output of the SAC-SMA model, total
channel inflow (TCI), was disaggregated uniformly into NEXRAD grid resolution for input to the
linear distributed routing scheme. The routing scheme was operated at the same scale, which was
the radar pixel size, for all of the numerical experiments. Volumes of TCI from the SAC-SMA
model can be different at each sub-basin scale depending on rainfall variability.

A second series of numerical experiments were conducted to estimate the routing
contribution to scale dependency separately from runoff volume effects. To do this, the finest
resolution SAC-SMA TCI output was averaged over different sets of sub-basin areas. Spatially
averaged sub-basin TCI was then disaggregated uniformly into NEXRAD grid resolution for input
to the linear distributed routing scheme. These experiments are referred to as “TCI Averaging”
experiments. These experiments produce differences in the hydrograph shape at different sub-basin
scales without changing the total runoff volume over the total headwater basin.

4.5. Results and Discussion
For each set of numerical experiments, simulated hydrographs from selected headwater

basins, X, were compared to a reference hydrograph, X ; ., which was the hydrograph from the run
at the finest grid resolution. Mean square differences, RMS, were calculated using Equation 4-1:

N

2
2( i,k“Xi,ﬁne) 4-1)
RMS = | L=
* N

where N is the number of data pairs, k is the scale identifier, and x is the type of statistic. RMS
statistics were calculated using both hourly discharges and peak flow volumes. Peak flow volume
was defined as a total runoff of hydrograph above 50% of the maximum discharge of a flood even
as depicted in Figure 4-1 and in Equation 4-2:

Vv, = f max [(Q, (1) - %),O]df (4-2)
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where V, is the volume in the reference hydrograph, Qref is the discharge of the reference
hydrograph at time t, and Q. is the maximum discharge of the reference hydrograph for the event.

Peak flow window

160 - < y

Qr:f.max

120 1

Discharge, cms

80 -
Qr:f,max/z

40

t Time, hour t2

Figure 4-1 Schematic of the peak flow definition
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4.5.1. Hourly discharge statistics.

Examination of the results revealed that mean square differences of hourly discharges
usually increased with increasing size of sub-basin for the both Rainfall and TCI averaging
experiments. Similarly, mean square differences of hourly discharges also increased with increasing
size of a total headwater basin area when the basin was modeled as a lumped basin. However,
differences in lumped model results for different total basin sizes can be larger than mean square
differences depending on the sub-basin scale. Relative differences of a lumped run compared to the
finest resolution run were in the range of 10-30% of the variability (i.e. STD) of hourly discharges..
The routing contribution (percent of RMS of TCI averaging experiments as compared to the RMS
of Rainfall averaging experiments) we define as the Routing Ratio, and can be as much as 70% for
the largest basin as seen in Figure 4-2. Although there is a tendency of increasing the routing
contribution with increasing headwater basin area, there is no strong correlation. Other factors, such
as the basin shape, channel network configuration or rainfall patterns, can contribute significantly
to this dependency.
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Figure 4-2. Routing contribution to the total mean square difference of hourly
discharges for different basin areas, Tulsa RFC.

4.5.2. Peak flow statistics.

Examination of the results shows that the RMS statistic for peak flow volumes reflects a
stronger water balance scale dependency. In addition to the mean square difference of the peak flow,
RMS, a relative mean square difference, E,,,, was calculated as a ratio of the peak flow variance,
STD of the reference hydrograph. The statistics were calculated for the Rainfall and TCI averaging
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experiments. In both sets of numerical experiments, the Rainfall or TCI averaging lead to the
reduction in peak flow.

The numerical experiment results indicate that it is important to consider two different
aspects of scale when comparing hydrographs. These is the size of the sub-basins on one hand and
the size of the total basin area on the other. The increase of the sub-basin size leads to the increase
in relative peak flow differences compared to the finest resolution for both the Rainfall and TCI
averaging cases. In contrast, the increase of the total headwater basin area leads to the decrease in
relative peak flow differences, especially for the Rainfall averaging as seen in Figure 4-3. Although
the TCI averaging is less sensitive to the total basin area, relative differences vary much from basin
to basin, as seen in Figure 4-4.

It was possible to normalize peak volume differences to exclude the scale dependency on the
total basin size. Mean square peak flow differences at each sub-basin scale k, RMS),, were normalized
by the peak flow difference at the total basin area (lumped basin), RMS,, for each headwater basin

RMS,
* RMS,

(4-3)

These values were plotted against a relative scale index calculated as the ratio of the total headwater
basin area, 4, to the sub-basin area, 4,. Figures 4-5 and 4-6 display these plots for the Rainfall and
TCI averaging experiments. As expected, Rainfall averaging is more scale dependent. Fifty percent
differences in the peak flow can be seen up to the scale index equals 10, i.e. a lumped basin was
subdivided into 10 sub-basins. The same level of differences for the TCI averaging occurred only
at scale index of 3-4. It is important that the relative mean square error does not vary much in a wide
range of total basin areas (from 329 km?® to 4200 km?). A strong correlation exists between the
normalized peak volume differences and the relative sub-basin scale, Figures 4-5 and 4-6. Equations
4-4 and 4-5 were derived for the Rainfall and TCI averaging, respectively

Rainfall averaging

A 038
E, = () _
= Ak) (4-4)
TCI averaging
_ A 0965
E=() (4-5)

k
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Figure 4-3. Peak flow differences compared to the finest scale at different
sub-basin and total basin areas: Case of Rainfall averaging.
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Figure 4-5. Scale dependency of peak volumes for different headwater basins: Case of
Rainfall averaging.
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Figure 4-6. Scale dependency of peak volumes for different headwater basins: Case of
Runoff averaging.

The theoretical basis of this type of scale dependency was presented by Gupta and Waymire
(1990) to describe statistical properties of spatial rainfall and river flow distributions at different
scales. Simple reformulation of the Equations 4-1 and 4-2 leads to the relationship between mean
square differences of the peak flow at different scales:
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RMS

k+n

A
= RMS, (—)" (4-6)

k+n

where it is assumed that sub-basin area decreases with increasing ». Equations (4-3) through (4-5)
can be used to estimate relative differences of the peak flows simulated using different scales for the
water balance and routing simulations. The numerical experiments present a potential advantage of
basin subdivision. However, the real benefit can be smaller depending on the level of uncertainties
in input/output data, the model structure, and the model parameter spatial variability.

The above numerical experiments did not account for noise in input data, specifically in
rainfall information. Noisy input can eliminate any benefit realized by basin. The relative peak flow
differences simulated using noisy rainfall are plotted versus the simulation scale in Figure 4-7 for
one of the headwater basins. Unbiased noise from Gaussian distribution was applied to pixel rainfall
values. Spatially non-correlated random noise of 25, 50 and 75 percent of a basin mean rainfall was
generated in the analysis. Figure 4-7 indicates that the finest resolution run is very sensitive to the
noise in rainfall. Differences in the peak flow at this scale using noisy data can be greater than
differences at lower resolutions. When a high level noise was applied to each pixel, the finest
resolution run gave bigger differences compared to the reference peak flow than a lumped run.
However, small spatial averaging of noisy rainfall (e.g. four pixels) leads to very fast reduction in
the effect of noise. As a result, all sub-basin scales bigger than one pixel size gave smaller
differences in the peak flow than a lumped run.

4.6 Conclusions

Relative differences of hydrographs simulated by lumped and the finest resolution (16 sq.
km.) were in the range of 10-30% on the basin areas from 400 sq. km. to 4200 sq. km. The routing
contribution can be as much as 70% for the largest basin. Although there is a tendency of increasing
the routing contribution with increasing headwater basin area, there is no strong correlation. Other
factors, such as the basin shape, channel network configuration or rainfall patterns, can contribute
significantly to this dependency.

Because of the big contribution of the routing, it is very important to account for the
differences in routing from different areas of a basin. Using just a lumped unit hydrograph can

eliminate benefit of the semi-distributed approach of the water balance calculations.

It is important to consider two different aspects of the scale when comparing hydrographs.
These are the size of the sub-basins on one hand and the size of the total basin area on the other. The
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increase of the sub-basin size leads to the increase in relative peak flow differences compared to the
finest resolution for both the Rainfall and TCI averaging. In contrast, the increase of the total
headwater basin area leads to the decrease in relative peak flow differences, especially for the
Rainfall averaging.

The relationship between scale and peak flow volumes can be used for a rough estimate of
the sub-basin size to account for the spatial variability of rainfall.

The numerical results indicate that some improvement in simulation capability can be
realized by disaggregating basins. However, tests indicate that finer scale simulations are more
sensitive to noise in the precipitation data. It agrees with results obtained by Kouwen and Garland
(1989). Differences in the peak flow at the finest scale, 4x4 km, using noisy data can be greater than
differences at coarser resolutions. However, small spatial averaging of noisy rainfall leads to fast
reduction of the effect of noise.
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5. Lumped and Semi-Distributed Modeling Tests

5.1 Calibration of Lumped Test Basins Using Historical Data

Calibration of the test basins was carried out in order to derive lumped, 6-hour
simulations that would be used as a standard of comparison in subsequent tests using radar data
in a lumped and semi-distributed mode. These standards represent the best simulations that can
be attained using the current operational procedures. Lumped and semi-distributed simulations
using radar data will be judged against these standard simulations as well as observed
hydrographs.

Sacramento model parameters for the basins WTTO2, ELDO2, and KNSO2 were derived
using standard procedures for time series development and manual calibration. Final parameters for
these basins appear in Table 5.1-1. It can be seen that the parameters are quite similar. An
graphical analysis of USGS mean daily flow records for each of these basins revealed that the basin
response was quite similar, thereby supporting the final parameter sets. Figure 5-1 presents a semi-
log plot of an event in June, 1985. Hydrographs for ELDO2, WTTO2, and KNSO2 are shown, and
the similarities, especially in base flow, can be readily seen. ELDO2 shows a tendency to have more
of a riparian vegetation effect, which is reflected in the higher RIVA value in Table 5.1-1.
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Table 5.1-1

Final Sacramento Model Parameters from Manual Calibration

Parameter KNSO2 ELDO2 WTTO2
uztwm 40 45 50
uzfw 25 30 25
uzk 0.3 0.3 0.3
pctim 0.002 0.00 0.005
adimp 0.0 0.01 0.0
riva 0.035 0.017 0.015
Zperc 200 190 220
rexp 1.2 1.6 1.6
lztwm 200 175 265
lzfsm 25 25 24
lzfpm 72 40 79
lzsk 0.15 0.10 0.12
lzpk 0.006 0.008 0.009
pfree 0.15 0.10 0.15
side 0 0 0
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5.1.1 Comments on Calibration with NEXRAD Data

In this section, a description of the process of manual calibration of the Sacramento model
using MAPX will be discussed. One of the known concerns regarding the use of NEXRAD for
calibration is the short period of record. University research (Univ. of Arizona, 1995) and the
experience of many users have indicated that approximately 8-10 years of data are required to
adequately determine the parameters of the Sacramento model. However, the longest record of
NEXRAD data is approximately 4 years in duration, leaving open the question as to the suitability
of the current NEXRAD archive for proper calibration. Nonetheless, experiments with lumped and
semi-distributed basin formulations required that some level of calibration be attempted. The
following are comments on efforts to manually calibrate basin WTTO?2 at an hourly time step using
NEXRAD data on a lumped scale.

As with calibration with rain gage precipitation products, one must be willing to investigate
suspected errors in the precipitation forcing. For example, given the known problem with bright
band contamination during winter months, it was not known whether the precipitation event on Jan,
5, 1995 was properly simulated. If the precipitation measurements were affected by bright band
contamination and thus over estimated, then this event should be ignored during calibration.
Adjustment of model parameters to simulate this event would likely result in parameters that would
not be appropriate for other periods when good precipitation data was available. Discussions with
ABRFC personnel revealed that for this event, there was no bright band contamination.

Tables 5.1.1-1 and 5.1.1-2 present a comparison of results achieved through manual
calibration versus automatic calibration using MCP3 and the STAT-QME operation.. The automatic
procedure attempted to minimize the RMS error statistic. From the monthly bias results in Table
5.1.1-1, it can be seen that except for the months of May and September, the manual method leads
to results that are as good or better than the automated procedure when evaluated on a daily time
step. The flow interval biases computed by the two methods are also quite similar, except that the
biases for the highest two ranges switch. ;

What is different between the two calibration methods is the final value of the SAC-SMA
model parameters . Table 5.1.1-3 presents the two sets of parameters. Several of the parameters are
quite similar. For example, the sizes and release coefficients of the soil moisture zones are
somewhat similar, with the exception of uztwm and lzfsm. However, striking differences exist
between the parameters controlling the percolation demand curve. Manual calibration results in a
percolation demand curve that is fairly linear (value of 1.2) between pbase and the value of 130 for
zperc. In contrast, the automatic optimization resulted in rexp being 1.5 and zperc being only 40.
Another great difference is the value of pfree: automatic calibration resulted in a much higher value
than manual calibration. While it is known that it is difficult if not impossible to determine a “true”
set of SAC-SMA parameters for a basin (Gupta, et al., 1998), manual calibration methods might not
result in those derived by automatic calibration. While the optimized parameters are not outlandish,
they are outside the range of parameters usually derived through manual calibration.
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Table 5.1.1-1 Results from Manual and Automatic Calibration of WTTO2. Statistics computed by
STAT-QME option using Mean Daily Flow.

% Bias Bias MM
Month Auto Manual Auto Manual
October -23.7 -23.9 -4.0 -4.0 |
November -11.4 3.0 -8.7 1.8
December -19.8 -6.4 -5.6 -1.8
January -3.7 -2.5 -1.5 1.0
February -19.7 -21.1 -3.5 -3.8
March -12.9 -7.8 -5.5 -3.3
April 226 32.2 11.7 16.7
May 4.5 9.7 2.6 56
June 9.1 3.1 3.5 1.2
July -6.9 -7.3 -1.1 -1.1
August 6.7 -4.1 0.6 -3.7
September 10.7 -14.1 -2.6 -3.5
total -3.33 0.94 12.2 6.22

Table 5.1.1-2 Interval Bias from Manual and Automatic Calibration

Flow Interval Bias
Flow Range Auto Manual
0-.61 No cases no cases
0.61-1.91 249 200
1.91-6.10 0.6 -1.4
6.10-19.05 -9.5 -9.0
19.05-60.96 -1.1 -3.1
80.96-190.51 42 221
above 190.51 -13.8 -3.18
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Table 5.1.1-3 Hourly Parameters for WTTO2 Derived using Automated and Manual Calibration.

Parameter Manual Automatic
uztwm 40 93
uzfwm 35 28

uzk 45 .66
pctim .005 .005
adimp .02 015

riva 015 0
Zperc 130 40

rexp 1.2 1.51
lztwm 130 133
1zfsm 25 53
lzfpm 83 100

lzsk 0.13 0.12

lzpk .006 .0097

pfree 10 412

side 0 0.
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One of the difficulties with manual calibration and the current Interactive Calibration
Program (ICP) is that X window versions of plotting function for hydrograph comparisons are
limited to the WY-PLOT, which is limited to daily data. Statistical analyses are limited to the
use of the STAT QME operation for mean daily flow. The use of daily data to calibrate hourly
SAC-SMA parameters to hourly streamflow is at best difficult. For example, hourly plots of
observed and simulated flows for a particular event may show a mult-peaked response, while in
the WY-PLOT ICP display, only a single peak is visible due to the averaging from hourly to
daily flow in the MEAN-Q operation.

If manual calibration is to be used in the future with finer scale data, then new ICP plot
routines need to be developed. As of the date of this writing, an X windows version of the
NWSRFS PLOT-TS operation is being developed and tested in HRL. This will add additional
plotting capability to the Interactive Calibration Program. With this function, a user can plot
simulated and observed hourly hydrographs with all of the panning and zoom capabilities present
in the current WYPLOT routine of ICP.
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5.2 Derivation of Synthetic Unit Hydrographs

Three methods of were used in Phase 1 to develop unit hydrographs for lumped and semi-
distributed modeling tests. Each method is described below.

Method 1: S-Curve Transformation

The first method consists of the S-curve transformation, a method found in any text on
hydrology. First, standard manual derivation methods were used to derive 6-hour unit graphs using
historical 6-hour MAP data and USGS mean daily flow data. For some of the tests, these 6-hour
unit graphs were converted to 1-hour unit graphs using the S curve technique.

Given the availability of a DEM and derived data sets, several synthetic methods were used
to derive hourly unit graphs for lumped and sub-basins. These tests were conducted in order to
investigate the importance of routing vs. runoff volume generation.

Method 2: Nash Cascade Approach

Another approach to the development of synthetic unit graphs is the Nash cascade of linear
reservoirs. Nash’s UHG is a two parameter gamma distribution

I B AV R P 5.2-1
h(?) kF(n)(k) e (5.2-1)

where 7 is a shape parameter corresponding to the number of reservoirs in the cascade, k is a scale
parameter representing storage, I'(n) is the Gamma function, and h(t) are the ordinates of the unit
hydrograph. Given appropriate precipitation and runoff data, the parameters n and k can be
calibrated. Method 2 for derivation of unit hydrographs consisted of using 1 Nash cascade and
calibrating the n and k parameters.

Method 3: Lumped Unit hydrographs Derived Using Spatial Data

In this section, unit hydrographs for lumped areas are derived by using spatially distributed
data, either in the form of sub-basins information or Digital Elevation Model (DEM) data.
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Method 3:1 Nash Method and Sub-basins

A somewhat non-traditional use of the Nash cascade was investigated for the Watts
watershed in order to derive a lumped basin unit hydrograph. Given that the Watts basin was sub-
divided into a collection of 8 sub-basins for semi distributed tests, the same configuration was used
to derive a lumped unit graph. The following steps were followed in the unit graph derivation.

1. The SAC-SMA was run on a lumped basis using calibrated lumped parameters. A time series
of total channel inflow (TCI) was generated.

2. An 8 sub-basin representation of Watts was derived, with the TCI time series applied to each of
the sub-basins.

3. Assign a Nash cascade to each sub basin reflecting the movement of runoff (TCI) from each of
the sub-basins to the main basin outlet. Rout the TCI from each sub-basin to the parent basin outlet.
Simulated runoff at the main basin outlet is the sum of the routed runoff from each sub-basin.

4. Manually calibrate the k and n parameters in each sub-basin by comparing the simulated runoff
to the observed runoff at the main basin outlet.

For the semi-distributed modeling studies, the individual unit hydrographs for each of the 8 sub-
basins were used.

Method 3.2: Clark Time Area Approach.

The time-area approach is based on a drainage area distribution over a basin. Because the
original version of this approach was based purely on translation, it usually overestimated the peak
rate. To overcome this problem, Clark (Clark, 1943) suggested to route the time-area curve through
a single element of linear storage (e.g., one Nash’s reservoir). This has been a very widely used
approach in watershed simulations. The calculations can be outlined in general as below:

a) generate channel length distribution curve using DEM. Figure 5-2a presents the channel
length distribution for the Illinois River at Watts, (WTTO2).

b) derive the cumulative area vs distance curve, as shown in Figure 5-2b.

b) estimate channel flow UHG ordinates h(t) based on area-length curve

h (f) _ A(Lt) _A(Lt_1)i

5.2-2
c o (53:2-2)
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where i is the unit rainfall excess, dt is the time step of the UH, 4(L,) is the total area below
isochrone Z, (from area-length curve), the isochrone L, can be estimated if the flow velocity, v, is
available: L,=v, .

¢) estimate overland reservoir response using a single Nash Reservoir

t-dt t

hh(t)=e_ o _g (5.2-3)

where 7, is a lag time of overland flow.

d) convolution of the channel UH and overland response

t
h(t) = f h(@)h,(t-g)dg (5.2-4)
0

The convolution integral in equation 5.2-4 results in the ordinates of the unit hydrograph h(t)
according to the following example:

Timet=0 h(0)=0

Timet=1 h(1)=h,.h,

Timet=2 h(2)=h,.hy,, hyh
Timet=3 h(3) =hhy;+ h,ah, + by,

There are two parameters that should be defined to generate the UH: overland flow lag time
r;» and average channel velocity v,. The best approach is to estimate these parameters from rainfall-
runoff time series.

The difference in time between rainfall excess and flood peak, t,, can be used to estimate
channel velocity:

L
v, = f;ax (5.2-5)
P

where L, is the distance from outlet to the maximum of contributed basin area (from area-length
curve). The overland flow lag time can be assumed to be equal to the difference in time between
peak of flood and the center of mass of hydrograph.

If there is no observed data the parameters can be estimated from an empirical relationships.
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Johnston (in Dooge, 1974) derived a relationship based on 19 catchments with areas between 25
and 1,624 sq. ml. in the Scotie and Sandusky basins. He proposed the relationship for the time of
concentration (i.e., base of the time-area curve):

L .
t,=5.0(-—)°% 5.2-6
/s : (5.2-6)

where 7, is the base time in hours, L is the length of the principal stream (from outlet to watershed
limit) in miles, S'is the average slope of the main stream in feet per mile. Similar relationships were
obtained by Thomas (1974) for small Oklahoma watersheds (areas 5-20 sq. ml.)

L
f,=4.99(—)>% 5.2-7)
c s (
and by Carter (in Thomas, 1974) for the Washington area:
L
t,=4.18(-—)0%2 (5.2-8)

/S

The channel velocity can be estimated using these relationships. As an example, from Johnston’s
equation

v, = ti =0.2(Ly/S)%5 (5.2-9)

The overland flow lag time can be estimated from Eaton’s equation (in Dooge, 1974)
A 1
r.=12 2/3 173 5.2-10
h (—L ) (—R) ( )

where R is the branching factor that varies from 1 to 2. A few case studies suggested that it is better
to use a value of 2 for the branching factor. Equation 5.2-10 then becomes:

r,=0.95 (%)2’3 (5.2-11)

Given the availability of precipitation and discharge data, t, was derived for the WTTO2
basin, and a v, was subsequently computed. Using v, Eq. 5.2-2 was solved go derive the channel
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unit hydrograph for the WITO2 basin. Eq. 5.2-11 was solved for r , and the overland response
function for WTTO2 was derived. Convolution of Eq. 5.2-2 and 5.2-3 resulted in the optimal unit
graph in Figure 5-3 and it can be seen how the optimal unit hydrograph resembles the stream length
distribution.

For the WTTO2 basin, DEM-derived data sets such as flow connectivity were available.
In addition, the USGS records specified an average channel slope. Using these data, Equation 5.2-6
was used to derive t, which was subsequently used to derive v,. The resulting unit hydrograph is
plotted in Figure 5-3 as the GIS_UH. The correspondence of the two derived unit graphs to each
other and the stream length distribution can be seen in Figure 5-3.

Figure 5-4 presents two different unit hydrographs for Baron Fork at Eldon, OK. (ELDO2)
The 6-hour unit hydrograph derived using manual calibration methods was translated to a 1-hour
unit graph using a standard S-curve technique. A GIS-based unit graph was also derived. It is not
clear why the jagged features in the GIS-based unit graph occur. It may be that the small size of the
basin (308 sq. mi.) results in a small number of HRAP cells and thus an erratic stream length
distribution plot. Nonetheless, it can be seen that the GIS based unit graph is an adequate
representation of that derived from the calibrated 6-hour unit graph.

Figure 5-5 presents the relative contributions of the sub-basin unit graphs for the Watts
lumped unit hydrograph basin. The ordinates for each sub-basin unit hydrograph can be derived
from Figure 5-5 by subtracting the ordinates of the unit-graph plotted sequentially before it. The
total unit hydrograph is represented by the outer shape of the double peaked hydrograph. The total
unit hydrograph has a minor peak on the rising limb of approximately 14,000 cfs at about 8 hours.
The major peak of the total unit graph is approximately 25,000 cfs at about 19 hours. It can be seen
from the figure that the two-peaked shape resembles the stream length distribution and the unit
graph derived using the Clark method.
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5.3 Lumped and Distributed Modeling Tests with Stage III and Basin WTTO?2

5.3.1 Lumped Approach for WTTO2

A first series of hydrologic modeling tests was conducted on basin WTTO2 using a lumped
approach. In these tests we hoped to determine the benefit of using Stage III data to define lumped
MAPX input to the Sacramento model. Simulations were generated for the period October 1, 1993
to June 30, 1996 while statistics were generated for the period June 1, 1994 to June 30, 1996. In
this way, any errors generated by initial conditions would not affect the statistics.

For the 1-hour lumped modeling tests, unit hydrographs were derived using the four methods
described in part 5.2 discussed earlier:

1. 1-hour uhg derived using a standard S-curve technique applied to the calibrated 6-hour
unit hydrograph: Method 1.

2 1-hour unit graph derived using a single Nash cascade, with calibration of n and k
parameters: Method 2.

3. 1 hour unit graph derived using spatial information:

3.1 1-hour unit graph derived from the convolution of 8 Nash unit graphs (one for
each of 8 sub-basins) Each sub-basin had a Nash unit hydrograph, reflecting the
movement of water to the main basin outlet: Method 3.1

3.2 1-hour unit graph defined using the Clark time area: Method 3.2

Even though there is some uncertainty regarding the consistency and length of period of
Stage III data, an effort was made to recaibrate the SAC-SMA parameters for use with hourly MAPX
data. Parameters for the SAC model were derived using automatic calibration techniques. Table
5.3-1 presents these parameters. Hourly stages were available from USGS gages and converted to
discharge using the operational rating curve from the Tulsa River Forecast Center.

6-hour lumped simulations for WTTO2 were performed using archived operational MAPX
and MAP time series discussed in Chapter 3. Recall that these time series are those which the
ABRFC generated from using the operational MAP preprocessor and from Stagelll data. These time
series were subsequently used in their operational forecasting. The 1-hour MAPX time series were
aggregated to form a 6-hour time series. In these simulations, SAC-SMA parameters were
developed through standard manual calibration techniques using over 40 years of precipitation data.
6-hour simulations were also performed using parameters that were recalibrated for use with hourly
Stage III data.
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Table 5.3-1 Sacramento Model Paiameters used in 1-Hour Simulations with WTTO?2

5.3.1.1 Results

parameter value
uztwm 93
uzfw 28
uzk 0.66
pctim .005
adimp 015
riva 0
Zperc 40
rexp 1.51
lztwm 133
1zfsm 53
1zfpm 100
lzsk 0.12
lzpk .0097
pfree 412
side 0

Figures 5-6 through 5-8 display the results of these 1-hour lumped modeling tests in the
WTTO?2 basin using several unit graph derivation methods. Not shown in these figures are the
simulations using the Clark time-area uhg, as they are very close to the simulations derived using
method 3.1 (the Nash method). These figures show that the transformed 6-hour unit graph (Method
1 - S Curve ) leads to damped responses in almost every case. For the April, 1996 case, the
simulation derived using the transformed 6-hour uhg was not able to match the double peaked
observed response. In all cases shown, the use of spatially distributed information, either in the form
of channel length distribution in the case of the Clark uhg, or sub-basin responses in the case of the
Nash method, leads to more accurate simulations of the observed hourly data.
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Figures 5-9 and 5-10 show scatter plots of observed and simulated hydrograph peaks for two
unit hydrograph methods. It can be seen in that the simulations from the 8 sub-basin Nash approach
(and thus the Clark time-area method) produce the best agreement in peak flows.

Additional simulations were performed at a 6-hour time step, using the archived operational
MAPX and MAP time series from ABRFC. Selected events from these simulations appear in
Figures 5-11 and 5-12. From these figures it can be seen that the 6-hour MAPX simulation was
consistently better than the 6-hour MAP simulation. For comparison, the 1-hour MAPX simulation
using Method 3.1 for unit hydrograph generation is also plotted. It can be seen that the 1-hour
MAPX leads to better simulations than either of the two 6-hour simulations. Hourly simulations
using stage III more closely follow the multi-peaked observed streamflow.

5.3.2 Semi-distributed Modeling Tests

5.3.2.1 General Approach

For the semi-distributed modeling tests, the general emphasis was to test a very simple
approach to capturing the spatial variability of precipitation. Recall that the goal of Phase 1 of the
Distributed Modeling Project was to investigate the use of distributed precipitation information as
a means of improving simulation capability. This would be accomplished through the use of sub-
basins, each having its own lumped input. Subsequent to this effort would be investigations into
the use of models with distributed hydrologic parameters. We have defined this effort to be Phase
2 of the Distributed Modeling Project

With this in view, WTTO2 was disaggregated into 8 sub-basins and for each a unit
hydrograph was derived. These unit graphs modeled the movement of runoff volumes from each
sub-basin to the main basin outlet. Unit hydrograph Method 3.1 was used for each sub-basin. Thus,
in this modeling approach, there is no explicit channel routing. Future research may include the use
of an explicit channel routing procedure such as Muskingum-Cunge to move water from sub-basin
outlets to downstream computational points. '

Gridded precipitation data is used to define MAP time series for each sub-basin. The same
Sacramento model parameters were applied to each of 8 sub-basins and calibrated by uniformly
adjusting the parameters up or down. Re-calibration of the 1-hour lumped parameters is necessary
due to the change in spatial scale of the precipitation. Only the percolation parameters ZPERC and
REXP were adjusted to recalibrate the model to semi-distributed input defined by the gridded radar
values.
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Continuous simulations were performed from October 30, 1993 to July 31, 1996. However,
to minimize any biases arising out of inaccurate initial conditions, statistics were generated using
only the period June 1, 1994 to June 30, 1996.

5.3.2.2 Results of Semi-Distributed Tests in WTTQO2

Figures 5-13 through 5-15 present results from the semi-distributed tests for the Illinois River
at Watts, Ok. In these tests, the unit hydrograph for the sub-basins was derived using Method 3.1
in which a Nash cascade was assigned to each of the 8 sub-basins. The Nash n and k parameters were
calibrated so that the simulated discharge agreed with the observed discharge. The lumped
simulations were derived using the unit graph from method 3.1. Surprisingly, the sub-basin
approach does not dramatically improve simulation accuracy compared to the lumped simulations,
which were already quite good. Figure 5-14 shows a case where the sub-basin approach led to better
simulation of the rising limb of the hydrograph. Apparently, Stage III captures a good estimate of
the areal mean precipitation, leading to a fairly good lumped simulation. In addition, examination
of these rainfall events reveals that most of them were fairly uniform in a spatial sense, and thus
adequately fulfill the assumptions of lumped hydrological modeling.

As mentioned earlier, the sub-basins were calibrated by uniformly adjusting up or down the
SAC parameters in each basin. In this sense, we are modeling semi-distributed precipitation, not
semi-distributed hydrologic parameters. One of the problems associated with a distributed or semi-
distributed approach to modeling is the method of parameter estimation and calibration. Figure
5-15 illustrates a difficulty with assigning uniform parameters to each sub-basin. The sub-basin
approach leads to a greatly overpredicted simulation. Examination of the individual MAPX times
series for this event in Figure 5-16 revealed that the precipitation predominately occurred over one
or two of the sub-basins, leading to the overpredicted streamflow response shown. From this, one
might conclude that the parameters for this sub-basin should be different than those in the other sub-
basins.

Table 5.3-2 presents the statistical results of the lumped and semi-distributed modeling tests
with basin WTTO2. Versions 1,2, and 3 represent the results of lumped hourly simulations descriped
in section 5.3.1. Versions 4 and 5 represent the semi distributed simulations. In version 4, the
lumped hourly parameters were applied uniformly to each of the 9 sub-basins. Version 5 is the same
as version 4 except that the SAC-SMA parameters have been recalibrated. 6-hour simulations are
presented in versions 6 through 9. Version 9 represents the best results achievable using the
standard lumped 6-hour rain gage based model of WTTO2 and historically calibrated SAC
parameters. Version 8§ is the same as version 9 except that the 6-hour MAPX data is used. Versions
6 and 7 are the same as versions 8, and 9 respectively except that the unit hydrographs are hourly
and derived using method 3.1

By using a 6 hour MAPX data instead of rain gage data used in version 9, simulation bias
can be improved as shown by the version 8 results. However there is a corresponding slight loss of
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accuracy as noted in the RMS value. The standard deviation of the discharges increases from 23.76
to 34.44, indicating more variability in the hydrographs. It can be seen that the simulations using
the operational 6-hour MAPX and 6-hour MAP time series produce significant bias. It is interesting
to note that the %bias improves in version 8 compared to version 9. This is a surprising result in
that the long term MAPX/MAP ratio for WTTO2 is 0.96 as reported in Table 3.1.2, indicating that
the MAPX values are biased low compared to the MAP values. Apparently, the lower bias of -19.87
is dominated by the event of June, 1995, in which the MAPX values were much greater than the
MAP values.

For this reason, these 6-hour simulations were repeated with a set of Sacramento model
parameters that were used with the 1-hour NEXRAD tests. These tests are versions 6 and 7. Here
it can be seen that an improvement in the RMS error from 14.7 to 11.74 was achieved, as was a
reduction in the bias from -13.2 to -8.52. A slight increase in the variability was noticed as seen in
the STD increasing from 28.44 to 29.42.

In general, 1-hour lumped simulations using Stage Il derived MAPX information led to an
increase in simulation accuracy, as seen in the results for versions 1,2 and 3. Statistically, the best
results in this group were achieved by using a 1 hour unit hydrograph derived from the summation
of 9 sub-basin unit graphs (method 3.1). Apparently, deriving a unit hydrograph using spatially
varied information is better than unit hydrographs based solely on lumped information. The S-curve
unit hydrograph and the lumped Nash unit hydrographs (methods 1 and 2) did not represent the
definition of the hourly observed hydrographs.

Two sets of semi-distributed simulations were run with MAPX data from Stage III. In
version 4, the Sacramento Model parameters from the lumped simulations were applied to each sub-
basin.. Version 5 is the same as version 4, except that some Sacramento model parameter
recalibration to the semi-distributed Stage III forcing was attempted. While visual inspection of the
hydrographs in Figures 5-13 through 5-15 reveals a fairly good fit, the statistical results for this
version show a slight degradation compared to any of the 1-hour lumped cases (version 2, 3, and 4)
Apparently, the RMS statistic, which tends to emphasize peak flow differences, is worsened by cases
such as those in Figure 5-15. In essence, while a 1-hour semi-distributed representation WTTO2
shows a slight general improvement in visual agreement between simulated and observed
hydrographs, any statistical improvement is masked by the peak flow errors in a few events.

In general, plots of the simulated and observed hydrographs and statistical results indicate
that the greatest improvement over the current 6-hour rain-gage based strategy is to use a lumped
model forced by NEXRAD-derived mean areal precipitation estimates in conjunction with a
redefined and calibrated 1 hour unit hydrograph. Further increases in simulation accuracy can be
achieved by using a semi-distributed approach. However, such increases are slight and must be
weighed against the difficulty in parameterizing and calibrating a semi-distributed model.
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5.4 Lumped and Semi-distributed tests with Basin ELDO2

5.4.1 Approach for ELDO2

Unit hydrographs for the basin ELDO2 were derived using the methods in section 5.2. For
the semi-distributed modeling tests, ELDO2 was disaggregated into 5 sub-basins along natural
topographic ridgelines. A unit hydrograph for each sub-basin was derived using method 3.1.

A 1- hour unit graph was derived by summing the sub-basin unit hydrographs. For 6 hour
lumped simulations, the manually calibrated 6-hour unit hydrograph was used. Manual calibration
of SAC model parameters was performed using standard trial and error approach using MAP time
series derived from NCDC data.

For tests with the NEXRAD data, recalibration of the SAC parameters was performed using
automated optimization techniques. The same parameters were used for the semi-distributed and
distributed representations and are listed in Table 5.4.1-1

Lumped 6-hour simulations were performed using MAPX and MAP time series from the
archives of operational data. These simulations used SAC parameters calibrated using standard
manual methods and NCDC cooperative observer data.

5.4.2 Results

As with the tests with basin WTTO2, simulations were run from October, 1993 to July, 1996.
However, statistics were generated only for the period of June 1, 1994 through June 30, 1996. In
this way, any biases caused by improper initial conditions in October, 1993 would be minimized
by allowing the model to cycle through almost a complete year. :

Figures 5-17 through 5-20 show typical events from the 6-hour time step simulations using
the archived operational MAPX and MAP time series and manually calibrated parameters using
historical raingage data. It can be seen in all these figures that the simulations with both radar and
gage data are predominately poor, with the rain-gage simulations showing a slightly better
agreement. The November 5, 1994 event was best simulated using the 6-hour rain gage data. In
this case, the radar based storm total precipitation over a 3 day period is 4.968 inches, while the rain
gage network mean areal values totaled just slightly more, 5.117 inches. However, examination of
the MAPX and MAP time series reveals that the rain gage network recorded a 6 hour period with
over two inches of rain, while the radar recorded only a bit over 1 inch for the same period. This is
puzzling, in light of Figure 3-3, which showed that the radar precipitation estimates are usually
more intense. For this event, the Sacramento model generated fast responding surface runoff for this
period using the more intense MAP data, leading to the peaked hydrograph response. Using the less
intense MAPX data, the Sacramento model simulated this event as slower responding interflow.
The intensity was not extreme enough to fill the upper zone tension water reservoir so as to generate
fast responding surface runoff.
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Table 5.4.1-1 Sacramento Model Parameters for 1 Hour Lumped and Semi-Distributed
Simulations.

parameter value
uztwm 45.0
uzfw 30.0
uzk 0.3
petim 0.0
adimp 0.01
riva 0.017
Zperc “ 190.0
rexp 1.5
lztwm 175
1zfsm 25
1zfpm 40
lzsk 0.10
lzpk 0.008
pfree 0.1
side 0.0

Figure 5-20 presents an event in which the precipitation as measured by the operational
raingage network led to an extreme overprediction, while the MAPX based simulation was more
reasonable. Examination of the MAP time series indicated that on March 8, 4.33 inches of
precipitation fell over the entire ELDO2 basin as a 6 hour areal mean. However, a closer look at the
NCDC climatological data for this month revealed that none of the point precipitation stations
recorded more than 2.6 inches for any day. Clearly this MAP value of 4.33 inches is an error. In
addition, from an examination of NCDC snowfall data and temperature data for March 7-9, 1994,
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it is evident that this event was a snowfall event. So, in addition to the errors in the 6-hour MAP,
the event was also mistyped as a rainfall event when it was most likely a snowfall event. Recall that
the SNOW-17 model is not used on the simulations in this report. While snow does occur in the
area, it is not a dominant part of the hydrological cycle. Discussions with personnel at the Tulsa
River Forecast Center reveal that while snow may occasionally occur, it quickly melts.

Figures 5-21, 5-22, and 5-23 present typical results from the lumped and semi-distributed
results of basin ELDO2 using radar data. Recall that in these simulations, some recalibration of the
historical parameters to the radar data was performed. As with WITO2, semi-distributed modeling
scenarios did not greatly improve hydrograph simulation beyond the lumped approach. Lumped
results based on hourly NEXRAD were quite good for the single peaked events in Figures 5.4-5 and
5.4-7, and the semi-distributed approach was not able to achieve much better accuracy. Neither the
lumped nor semi-distributed approaches were able to adequately reproduce the second peak in Figure
5.4-6

Table 5.4-1 presents the statistical results for the simulations for basin ELDO2. Version 4
represents the operational rain gage data with SAC-SMA model parameters calibrated using
historical.. This simulation should represent the best possible using the current lumped, 6-hour
gage-based modeling strategy. It is important to note that the use of the operational MAP time series
with historically calibrated parameters led to a -23% bias. Use of MAPX data (1 hour data
accumulated to a 6 hour time step) with the historically calibrated SAC-SMA parameters (Version
3) led to a further decrease in simulation accuracy, with a two fold increase in bias to -49.71. Itis
unclear why the bias using operational 6-hour gage data would be greater than that computed using
the historical 6-hour gage data. Comparison of versions 3 and 4 indicates that SAC-SMA parameters
should not be the same for rain gage and Stage 111 forcing.

As with the tests with basin WTTO?2, there is a great increase in accuracy over the lumped
6-hour tests by using 1-hour lumped MAPX based simulations. Comparison of the results for
version 4 and Version 1 show that the RMS error statistic is halved by using MAPX and a re-defined
unit hydrograph. Disaggregation of the ELDO2 basin into 5 sub-basin, each with its own unit
hydrograph, only slightly improves the RMS and %BIAS statistics. As for WTTO2, it appears that
the greatest gain in simulation accuracy compared to current modeling methods is to use hourly
MAPX values with a re-calibrated SAC model and re-defined hourly unit graph. One must question
whether the slight gain in simulation accuracy justifies the effort involved with the disaggregation
of ELDO2 into 5 sub-basins.
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5.5 Lumped and Semi-Distributed Simulations at Talequah.

5.5.1 Approach

Lumped and semi-distributed simulations for the basin defined by the gage on the Illinois
River at Talequah, OK (TALO2) followed the same methodology used with basins ELDO2 and
WTTO?2. The total area of basin TALO2 (959 sq. mi or 2484 sq. km) contains the headwater basins
WTTO2 and KNSO2. TALO2 is treated as a local area in the operational model used by the Tulsa
River Forecast Center, with basins KNSO2 and WTTO2 flowing into it. In lumped modeling tests
described herein, TALO2 was treated as a single headwater basin in order to perform tests on a
basin larger than WTTO2, KNSO2, and ELDO2. In semi-distributed modeling tests, TALO2 was
disaggregated into 9 sub-basins.

As the basin above the gage is not modeled operationally as a lumped area, no operational
rain gage derived MAP time series is available for the entire area. Thus, all simulations for basin
TALO?2 were performed at a 1-hour time step using the Stage III product to define precipitation input
for lumped and semi-distributed simulations. Parameters for the Sacramento model were derived
through automatic calibration against observed hourly streamflow values and are presented in Table
5.5-1

Table 5.5-1 Hourly SAC-SMA Parameters used for Lumped Simulations in Basin TALO2

parameter value parameter value
uztwm 123.0 lzfsm 95.9
uzfw 49.4 lzfpm 289.0
uzk 749 lzpk 0.0097
pctim .005 lzsk 0.122
adimp 0.0 pfree 0.693
riva 0.015 side 0.0
Zperc 30.5

rexp 1.3

lztwm 249.0

l1zfsm 95.9

lzfpm 289.0
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5.5.2 Results

Figures 5-24 through 5-26 present typical results from hourly lumped and semi-distributed
simulations of basin TALO2. Once again it was surprising to see the close agreement between the
lumped and semi-distributed simulations. Moreover, both simulations appear to be reasonably
accurate compared to the observed hourly streamflow hydrographs.

Figure 5-27 presents hourly simulations for the event in July, 1994. This is the same event
presented for WTTO2 in Figure 5-15. These results indicate that the semi-distributed formulation
performed worse than a lumped representation. This is most likely due to the problems of
Sacramento model parameterization in sub-basins which were discussed in Section 5.3.1

Table 5.5-2 presents the statistical results of lumped and semi-distributed tests for TALO2
from June 1, 1994 to June 30, 1996. These statistics verify that there is very little simulation
improvement gained by using a semi-distributed formulation versus a lumped model. While figures
5-24 through 5-26 indicate quite close agreement between lumped and semi-distributed formulations,
Table 5.5-2 shows that the hourly statistics actually slightly worsen when using a 9 sub-basin
formulation. As with the statistical results for basin WTTO2, this is most likely due to events such
as that is Figure 5-27, which would tend to emphasize the RMS error statistic.
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5.6 Discussion of Results from Lumped and Semi-Distributed Tests with
NEXRAD.

It is important to present the results of the preceeding section in light of past research on
the effect of precipitation variability on basin outflows. Numerous studies have been conducted
in the past two decades that point to the sensitivity of runoff hydrographs to spatial and temporal
variations in precipitation. Many of these studies examined the effects of raingage sampling
errors on the outflow hydrograph. In an early and oft-quoted work, Wilson et al., [1979] showed
that the spatial distribution of rainfall had a marked influence on the runoff hydrograph from a
small catchment. On the other hand, Beven and Hornberger [1982] stated that rainfall patterns
have only a secondary effect on runoff hydrographs, while a correct assessment of the global
volume of rainfall input in a variable pattern is more important in simulating streamflow
hydrographs. On a small watershed, Krajweski et al., [1991] found a higher sensitivity to the
temporal resolution of precipitation than to the spatial resolution. Ogden and Julien [1994]
performed tests that identified when spatial and temporal variability of precipitation was
dominant. Troutman, [1983], Ogden and Julien [1994], and Shah et al.,[1996a,b] also
investigated the effects of precipitation variability on hydrologic simulations.

It is interesting to note that the majority of these and other studies were based on
synthetically generated precipitation and streamflow records. Usually, comparisons were made
against a ‘reference’ or ‘truth’ hydrograph generated by running the hydrologic model at the
finest data resolution. Synthetically generated data were often used due to the lack of
appropriately long periods of observed data. Moreover, it can be seen from the research listed in
Table 5.6-1 that the majority of studies emphasizing the importance of the spatial variability of
precipitation used models containing the Hortonian runoff generatiion mechanism. It is now
recognized that runoff results from a complex variety of mechanisms and that in some basins, a
significant portion of runoff hydrographs is derived from slower responding subsurface runoff
[Wood et al., 1990].

Obled et al., [1994] commented that the numerical experiments in the literature were
based on the use of models which may be only ‘a crude representation of reality’. Furthermore,
they argued that the actual processes at work in a basin may not be those predicted by the model.
Thus, the research in the literature may have shown the sensitivity of a particular mode! to the
spatial variatiability of precipitation, not the sensitivity of the actual basin. The work of Obled
etal. is significant in that they were perhaps the first to examine the effects of the spatial
variation of rainfall using observed precipitation and streamflow data. In addition, the model
used in their studies focused on saturation excess runoff as the main runoff generation
mechanism. In simulations against observed data, they were unable to prove the value of
distributed inputs. A semi-distributed representation of the basin did not lead to improved
simulations compared to a lumped basin modeling scenario. In some cases, their model
responded to a rainfall event which the basin either ignored or dampened. In a reformulation of
their earlier model, Lindstrom et al, (1997) were able to improve their semi-distributed model
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performance, but concluded that they could not expect further breakthroughs as long as standard
input data is used and models are judged only by analysis of river runoff.

It is surprising to note that in all three watersheds in the tests herein, disaggregation of the
parent basin into sub-basins did not greatly improve simulation accuracy beyond that achieved
by the 1-hour lumped Stage III-based simulations. In some cases, the semi-distributed approach
led to a slight improvement in timing. Yet, it was surprising to find that little improvement was
gained even though strong rainfall gradients existed across the parent basin. In fact, the statistics
show that for WTTO2, the RMS error actually increases a small amount when a semi-distributed
formulation was used. In support of the findings of Pessoa, et al.[1993 ] and Obled et al.
[1994], a sub-basin approach to capture the critical spatial variability of precipitation did not
produce the expected improvements in streamflow simulation. It appears that consideration of
the spatial variability of the rainfall was important only insofar as it facilitated a more accurate
measure of the basin average volume. Any information contained in the spatial pattern of
precipitation did not lead to improvements in simulation.

These findings are counter-intuitive in that one would think that higher resolution
information would lead to better results. Obled et al. [1994] investigated similar surprising
results and postulated that they may be due to the type of runoff generating mechanism. In basins
marked by Hortonian i.e, infiltration excess, type of runoff generation, variability of both
precipitation and soil characteristics is important and is reflected in the basin outlet hydrograph.
In areas where saturated areas dominate the runoff generation process, most of the rainfall
infiltrates and spatial variations in the intensity of precipitation are dampened by the storage and
delays in the soil layers. They argued that while the spatial variability of precipitation is
important, it is not ‘sufficiently organized in time and space to overcome the effects of
smoothing and dampening’ when routed through a watershed

Finding similar results, Pessoa et al. [1993] noted that appropriately spatially averaged
precipitation seemed sufficient for the 840 sq. km. basin in their study. In their investigation, a
distributed model containing both Hortonian and saturation-excess mechanisms in each
computational grid element was used. In their synthetic analyses, all simulations were begun
when the basin was in a ‘“wet’ state, and when the dominant runoff generating mechanism
(measured by the number of pixels predicting each type of runoff) was rapidly changing from
Hortonian to saturation-excess.

Although counter intuitive, the results presented herein do not seem surprising when
viewed in light of the discussion presented in Obled et al. [1994]. In that work, the authors
challenged the generally accepted idea that the spatial and temporal variation of rainfall has a
strong effect on the outlflow hydrographs from natural catchments, arguing that this concept has
been taken for granted and has been based on numerical experiments and not simulations against
observed data. Numerical studies with synthetic data were performed in part due to the lack of a
sufficiently long record (Krajewski et al., [1991], Beven and Hornberger, [1982]).
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In discussing their semi-distributed results, Obled et al. [1994] also noted that:

* the results do no degrade with distributed information, but just remain at the same
already high level.’

However, it was noticed in several cases in our results where the semi-distributed
approach actually produced worse results than the hourly lumped simulations. Investigation into
one such event in the WI'TO2 basin (not shown) revealed that the precipitation occurred
predominately over a few of the sub-basins. In this case either the Stage III estimate of
precipitation is drastically wrong or the parameters in the sub-basins need to be quite different,
indicating the method of calibrating a semi-distributed model outlined above needs to be refined.
Apparently, assigning the same SAC-SMA parameters to each sub-basin is not a valid approach,
even if calibrated to observed basin outlet hydrographs. Assuming that the Stage III gridded
precipitation estimates are valid, then it is clear from such examples that hydrologic model
parameters may need to vary across sub-basins rather than be uniform.
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6. Case study in Upscaling and Downscaling of SAC-SMA Parameters

6.1 Introduction

As described earlier, an initial approach to capturing spatial variability in precipitation
is the semi-distributed model where a lumped basin is disaggregated spatially into a group of
smaller constituent sub-basins and the lumped parameters are uniformly distributed to all sub-
basins. The semi-distributed formulation may then be recalibrated by adjusting all sub-basin
parameters simultaneously and uniformly to improve the simulations. This semi-distributed
approach is a simple rainfall averaging technique that neglects the variability in model
parameters across the sub-basins and does not explicitly address scale dependencies in runoff
models. Some attempt at accounting for scale is done when recalibrating the semi-distributed
formulation to the basin outlet hydrograph. The evaluation of the semi-distributed approach is
performed by comparing continuous 1 hour simulations of observed hydrographs from lumped
and semi-distributed applications of the Sacramento model.

In this section, the process of downscaling of model parameters refers to the assignment
of lumped parameters to constituent sub-basins. The validity of downscaling lumped parameters
to sub-basins is tested by calibrating an interior sub-basin and comparing simulations from the
interior sub-basin using its parameters vs. the parent basin parameters. This test helps to evaluate
the validity of applying parameters from a lumped basin to constituent sub-basins. Thisis a
critical test of the assumption that lumped model parameters are appropriate and representative of
the parameters required for the simulation of interior sub-basins.

The concept of upscaling of sub-basin parameters to the semi-distributed formulation is
tested by comparing simulations of the semi-distributed model run with the lumped parameters
vs. the sub-basin parameters. In addition, these nested sub-basin verification tests highlight the
errors and problems associated with regionalizing head water basin parameters by applying them
to neighboring head water and local basins of differing spatial scales. Regionalizing runoff
parameters is a very common practice in modeling when data or time for calibration is limited.

This section presents the results of a nested sub-basin calibration and simulations. The
results are relevant to understanding how the parameters from a lumped basin apply, if at all, to
an interior sub-basin, and how small scale parameters apply to larger basins. Although the sub-
basin is nested inside the lumped basin, the results are relevant to cases where the sub-basin is
outside the lumped basin, as in the case of applying headwater basin parameters to local basins
and adjacent basins of varying sizes.

The experiments described above were performed on the Watts basin (1645 km?)
discussed in earlier sections. An 8 sub-basin formulation was used for the semi-distributed
model. Three years of 1 hour, 4x4 km Stage III radar-gage NEXRAD precipitation data were
used to simulate and calibrate the Sacramento model at Watts. The interior headwater sub-basin
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of Savoy (433 km?) was calibrated using an MAPX time series derived from 14 months of Stage
III precipitation data. USGS provisional 1 hour discharge data was used for the observed
hydrographs. Savoy is represented by 2 of the 8 sub-basins in the semi-distributed formulation.

6.2 Down Scaling from Lumped Parent Basin to Sub-Basins

In testing the validity of down-scaling model parameters, three sets of SAC-SMA
parameters are analyzed: 1) the lumped parameters from the 6 hour historically calibrated Watts
basin, 2) manually adjusted and optimized parameters using the 1 hour radar and discharge data
and 8 sub-basin formulation of Watts, and 3) a manually calibrated lumped parameter set from
Savoy using 1 hour radar and discharge data. All cases used a time-area unit hydrograph for
Savoy. The 12 ET-demand curve values were the same for all simulations. Table 6.2-1 shows a
list of the three parameter sets used in the study.

Simulation experiments on the interior sub-basin of Savoy illustrated that the parameters
from the larger lumped basin of Watts were somewhat useful for Savoy, but resulted in clear
systematic errors. The long term continuous simulation at Savoy using the Watts 6-hour
historically calibrated parameters did not produce the flashy peak runoff observed in the
headwater basin and also simulate too much base flow as shown in Figure 6-1. The figure
shows an example of the outcome of historically calibrating a basin, and then uniformly
distributing those parameters to smaller sub-basins. The results in Figure 6-1 are expected after
analyzing Figure 6-2, which shows the scale dependent runoff characteristics exhibited in
hydrographs from the three nested basins of Talequah (2482 km?2, TALOZ2), Watts (1645 km2,
WTTO2) and Savoy (433 km2). The observed hourly discharge shown in Figure 6-2 have been
normalized by the drainage area of Watts to highlight the systematic differences in runoff volume
and hydrograph shapes for the various scales of the basins analyzed. The basins received
approximately the same input depth of rainfall as estimated by radar, yet much more runoff is
generated from Savoy than Watts. The hydrograph is attenuated as it moves down the drainage
network, and it is assumed that there are greater losses from the larger basins which reduces the
overall runoff volume in the water balance. Smaller scale headwater basins generate more runoff
per unit area which is potentially attributed to fewer losses associated with less groundwater
storage and shallower soils. Steeper headwater slopes generally produce faster response runoff
that may not have time to become held in tension soil storage or river bank storage where it will
later be lost to atmospheric evaporative demands.

The Watts 6-hour parameters were recalibrated to reduce baseflow and generate more
rapid response surface runoff seen at the Savoy gage. Table 6.2-1 shows how the parameters
were calibrated to the observed Savoy hourly discharge hydrographs. Although the 6 hour
historical gage network parameters in Table 6.2-1 are not identical to the parameter set used in
Section 5.1 of this report, these parameters are an alternate parameter set and experiments with
either parameter set



Table 6.2-1: Sacramento Model Parameter Sets used in Upscaling and Downscaling Tests

parameter Watts Historical, Watts 8 sub-basin, Savoy, radar, 1 hour
gage, 6 hour radar, 1 hour
uztwm 40 93.1 60
uzfwm 25 28.4 20
uzk 0.25 0.694 03
pctim 0.005 0.005 0.001
adimp 0 0 0.01
riva 0.015 0.015 0.02
zperc 120 40.1 200
rexp 2.0 1.4 1.8
lztwm 160 133 100
lzfsm 40 50.3 20
lzfpm 100 100 25
lzsk 0.014 0.119 0.2
lzpk 0.009 0.0097 0.009
pfree 0.15 0.612 0.3
side 0 0 0
Upper Storage 65 121.5 80
Lower Storage 300 283 145
Total Storage 365 404 225
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support the same conclusions. Notice that the storage of Savoy was greatly reduced from the
storage at Watts. The unit hydrograph was also recalibrated with a sharper rising limb and a
smaller tail to reduce slow response runoff (see Figure 6.2-15 in the following section on unit
hydrographs). Down scaling of lumped parameters did not directly represent the local
heterogeneities in the Savoy sub-basin, or the general hydrologic response of a smaller headwater
basin.

Figure 6-3 presents simulated and observed hydrographs for an event on April 22, 1996 at
the Savoy gage. This event exhibited very fast response times and steep rising and falling limbs.
This complex event was best simulated with the calibrated Savoy parameters. Both of the Watts
parameter cases produced a dampened response that greatly underestimated the peak volume and
magnitude. The Watts 8 sub-basin parameters performed slightly better than the historically
calibrated 6-hour lumped Watts parameters.

Figure 6-4 shows a moderate single peaked flood event a few weeks later on May 10,
1996. All cases underestimated the observed peak at Savoy. However, the Savoy parameters
performed very well in the timing of the peak while underestimating the magnitude. The Watts
parameters responded slowly in both the time to peak and peak discharge, as compared to the
observed and Savoy simulations. The significant underestimation of all parameter sets may be
related to errors in initial conditions or radar underestimation.

Figure 6-5 shows a large flood event at Savoy on September 26, 1996, which
unfortunately is missing observed data. Interestingly, the case serves to illustrate that varying
results are generated as a function of discharge magnitude. Here, the Savoy and Watts lumped
parameters produced very similar results in the timing, magnitude and shape of the hydrograph,
with the lumped being slightly greater. This is a reversal in simulation results that we observed
in Figures 6-2 and 6-3 where Savoy parameters produce almost twice as much runoff as the
Watts parameters for the moderate sized events. The Watts 8 sub-basin parameters produced the
least amount of runoff, which is not consistent with the results shown in Figures 6-2 and 6-3.
These results may be a function of the storage or percolation rates of the 3 parameter sets
analyzed. Initial soil moisture states are also different for the 3 parameter sets, and therefore
create differences in the hydrographs.

Figure 6-6 shows another moderate sized event that occurred at Savoy on November 6,
1996. This event shows the similar trends from Figures 6.2-2 and 6.2-3 where the Savoy
parameters produce twice as much runoff as the Watts parameters. However, in this event, all
parameter sets produce nearly the same time to peak. It is difficult to evaluate which parameter
set best represents the observed data because the observed hydrograph looks as if it has data
errors because of the flat peak shape. It should be noted that the 1 hour observed discharge data
obtained for these tests is considered provisional by the U.S.G.S..
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Figure 6-7 is a good example of data problems that occurred on November 23, 1996. The
first peak shows that all parameter sets underestimated the moderately sized event, probably due
to an underestimation of the rainfall volume by the radar. Again, the Savoy parameters almost
reproduce the peak magnitude and the timing was slightly delayed. The Watts lumped
parameters generated a dampened response. All three parameter sets led to simulated secondary
peaks, while the observed discharge hydrograph is continuously receding. This is a common
calibration problem where there are errors in the discharge data or the radar products, and these
errors can significantly bias calibration statistics to the point that they are misleading or not
useful. There is reason to believe that this event was a wintery mix which the radar is not
designed to observe.

6.3 Upscaling from the Savoy Sub-basin to the Watts Parent Basin

In this series of tests, the 8 sub-basin formulation of WTTO?2 is used with two different
paramterizations: 1) the 1-hour calibrated Savoy parameters applied to each of the e sub-basins,
and 2) the 1-hour semi-distributed parameters derived through the calibration of the 8 sub-basin
formulation of WTTO2 described in section 5.3.2. Recall that the 1-hour Savoy parameters were
developed through calibration at the interior stream gage at Savoy, while the second set of
parameters was calibrated to the observed discharge at the outlet of the parent WTTO2 basin.

Figure 6-8 shows a four month simulation of the 8 sub-basin formulation at Watts using
the 1 hour calibrated 8 sub-basin Watts parameters and the Savoy calibrated parameters. The
figure shows that uniform application of the Savoy parameters to all of the 8 Watts sub-basins
resulted in too much runoff being simulated in the long term, and particularly in medium sized
events. This result is expected after analyzing the natural scale dependent hydrograph
characteristics shown in Figure 6-2. However, large isolated flood events existed where the
Savoy parameters simulated less runoff than the Watts parameters in the semi-distributed
formulation. The results in Figure 6-8 illustrate that the parameters from a single sub-basin may
not be representative of the other sub-basins, and do not necessarily result in an improved
simulation for the larger basin.

The degraded simulation performance at Watts with Savoy parameters may be attributed
to increased sensitivity of the sub-basin runoff to increased precipitation spatial variability.
Direct mapping of high intensity precipitation on sub-basins causes the semi-distributed model to
become more sensitive to parameter variability and Stage III precipitation errors across the basin.
Unit hydrograph estimation for the sub-basins and the scale dependent behavior of the
Sacramento model may have been contributing factors. Runoff simulations may also have been
affected by non-uniform initial soil moisture conditions in the semi-distributed case because
moisture states are a function of the recent space-time distribution of rainfall across the basin.
Lateral subsurface transfer between sub-basins was neglected.
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Figures 6-9 through 6-13 present simulated hydrographs derived using the two
parameterizations for the 8 sub-basins. In general, the use of the Savoy parameters in each of the
8 sub-basins for the parent WTTO2 basin leads to marked over simulation of the observed
streamflow response. While the Savoy parameters are sufficient for the Savoy sub-basin, their
uniform application to all of the 8 constituent sub-basins in WTTO2 is not appropriate.

6.4 Summary and Conclusions

Down scaling of parameters from the larger Watts basin to the nested headwater sub-
basin of Savoy caused systematic simulation biases in the long term simulation and conflicting
results on individual storm events. These results indicate that the parameters of a lumped basin
are not representative of its constituent sub-basins. The lumped parameters generally produce
too much baseflow for an upland headwater sub-basin, and not enough of flashy, fast response
runoff. Up scaling of sub-basin parameters to the larger parent basin resulted in over simulating
volume and acceleration of the timing and steepness of the rising limb of the hydrograph. This
indicates that smaller basins may have different hydrologic processes than larger basins, even
when one is a subset of the other. These results agree with the general physics of small basins
which have less groundwater flow and more surface runoff than larger basins. That is why
baseflow is over estimated when down scaling and under estimated when upscaling. The small
basins generate more fast response surface flow and therefore more sensitive to rainfall rates,
which leads to over estimating when upscaling.

The sub-basin formulation of the Sacramento is an attempt to capture the spatial
variability of precipitation. However, uniform application of the lumped model parameters to
all the sub-basins ignores the scaling effects of rainfall forcing on model runoff generation and
the local heterogeneities that exist within a basin. Natural soil moisture distributions generally
follow the rainfall distribution immediately after the storm. Over the inter storm period soil
moisture drains into the low lands. If the sub-basin are smaller than the natural hydrologic
boundaries, then the subsurface transfer of water will not be modeled and soil moisture states
may not be physically realistic. This causes differences in the temporal evolution of soil moisture
states for the various model formulations, even when using the same parameters, which can
result in runoff hydrograph differences. Differences in soil moisture states are obviously greater
for the cases where different model parameters were used.

Numerical scale runoff simulation experiments performed with the Sacramento model in
Chapter 2 of this report showed that parameters applied at finer scales produced more surface
runoff and less baseflow. These results were attributed to the increase in storm intensity at fine
rainfall averaging scales which increased the rainfall excess. However, rainfall averaging clearly
does not fully account for the spatial scale dependency of runoff that is observed in the nested
basins studied. This analysis of observed and simulated hydrographs from real nested basins
indicates that parameter adjustments are required when modeling at different space-time scales
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with the Sacramento model. Furthermore, calibrated parameters of a given basin are probably
not fully representative of the heterogeneities that exist in near by basins of similar or differing
scales, as shown in the up scaling regionalization experiments. Therefore, the spatially
variability of hydrologic model parameters should be accounted for when applying distributed
type models, and accounting for the spatial variability of rainfall may not be sufficient enough to
improve results attained from lumped modeling approaches.



6.5 Unit Hydrograph Analysis

The Savoy 1-hour calibration required a different unit hydrograph than the 6-hour Watts
‘parent basin unit hydrograph. A number of automatic and manual calibration methods were
tested to derive one. This experiment illustrates the importance of the unit hydrograph in the
semi-distributed modeling approach.

The S-curve method may be used to derive a 1 hour uhg from the 6 hour uhg at Watts.
Assuming that the sub-basin has the same hydrograph shape as the parent basin, scale the
volume of the Savoy unit graph according to a ratio of the area of Savoy and Watts to a power
(0.65 in the Savoy case). This power is a largely unknown and is generally calibrated or
estimated using judgement or trial and error. It is recommended that this method be used only if
there is no other information about the basin.

Terrain data may be used to derive unit hydrographs as a function of the time-area curve
for the basin, provided there is DEM (digital elevation model) data available. The DEM of the
basin is used to determine the distance of every pixel to the basin outlet, and the basin area that
drains through each pixel. This method is described be in section 5.2 of this report.

Routing of a unit depth of runoff from each pixel may also be used to evaluate the unit
hydrograph. The routing unit hydrograph may assume constant travel time in the hill slope and
the channel, or it may use a travel time that is a function of pixel slope, or any other information
available about slope, channel roughness, land use, vegetation, etc. This method was used
assuming constant travel velocities for the entire Savoy basin for the hill slope and for the
channel. This method may be used effectively with a reasonable assumption about travel time
constants, and may be calibrated if other information is available. A minimum of 10 pixels is
recommended. This method may also be effective at deriving unit hydrographs when the basin
experiences only partial coverage from precipitation and only a fraction of the basin is
contributing runoff.

Since 14 months of hourly discharge data were available at Savoy, a manually calibrated
unit hydrograph was also derived for use in the Savoy experiments. The results of the four
methods of unit hydrograph derivation are shown in Figure 6-14. The figure shows that all
methods produce similar and reasonable unit hydrographs with respect to timing and volume,
but with some noticeable differences in shape. Both of the terrain-based methods, time-area and
routing, result in more volume in the tail of the unit graph than the other methods. This may be
attributed to the routing coefficients or the geomorphology of Savoy. The routing method has a
less peaked round top that may be attributed to the assumption of constant travel times in all the
hill slopes and channels, regardless of the true pixel slope, or roughness. The S-curve method
had the most irregular shape due to interpolation between 6 and 1 hour ordinates, but it has a
very reasonable shape given that it was derived from Watts the parent basin. The manually
calibrated unit graph has the steepest rising limb and highest peak. This is due to the
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preservation of volume when it was estimated to remove the estimated interflow contribution to
the unit hydrograph. Due to the timing parameters in the Sacramento model runoff components
from interflow and the subsurface, the unit graph is not supposed to incorporate the timing
coefficients.

Figure 6-15 shows the effects of the various unit hydrograph methods on simulated
discharge from the Savoy event on April 22, 1996. Since this is a surface runoff type event as
simulated by the Sacramento model, the shape, timing, and peak of the simulated discharge
hydrographs look very similar to the shapes plotted in Figure 6-14.
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7. Major Conclusions

While each of the preceding chapters contained specific conclusions, a review of the major
conclusions will be presented here in order to tie together the entire effort.

In general, the use of Stage III precipitation estimates provides clear benefits over the use of
rain gage data for hydrologic modeling in the three basins studied. The most dramatic improvement
over the current RFC lumped 6-hour rain-gage based modeling approach was realized by using the
following:

a. Lumped approach

b. 1 hour time step

c. Precipitation input defined by MAPX derived from Stage I1I

d. Unit hydrograph initially defined by incorporating spatial data, ie. a time area approach
or a Nash unit hydrograph.

These results support the findings of Pessoa et al., (1993 ) and Obled (1994 ). In WTTO?2,
6 hour time step simulations with MAPX also showed improvement over the 6 hour rain gage based
simulations.

Surprisingly, disaggregation of the WTTO2, ELDO2, and TALO?2 basins did not provide a
significant improvement in simulation accuracy beyond the approach outlined above. Although the
results presented in Chapter 4 indicated that simulated hydrographs were sensitive to the level of
headwater basin disaggregation, we could not utilize this effect when tests observed data was used.
Our results also contrast some other research which has highlighted the influence of the spatial
variability of precipitation on outflow hydrographs. However, like the analyses in Chapter 4, the
majority of these past studies based their conclusions on the use of synthetically generated
streamflow. While hydrograph shape and timing of the rising limb appeared to be slightly improved
in some of our cases, the statistics showed a slight decrease in accuracy compared to the lumped
simulations. This is most likely due to the RMS error statistic being dominated by several badly
simulated events.

While the semi-distributed approach did provide limited improvement, several results
indicated a weakness in the approach for parameterization and calibration of the sub-basin SAC-
SMA parameters. Since the SAC-SMA parameters cannot be easily derived from physical
watershed data, the same parameters were assigned to each sub-basin. Correspondingly, with
discharge data only at the outlet of the basins, a strategy of uniformly adjusting model parameters
in all sub-basins was adopted for calibration with the Stage III data. However, several events
indicated that some sub-basins could have been parameterized differently. This was seen in the over-
prediction of some events in which the precipitation was concentrated on a few sub-basins. Yet, due
to the short 4 year period of data, too few spatially variable precipitation events were available for
explicit sub-basin calibration.

It is uncertain whether the Stage III archive and operational MAPX data are of sufficient
quality for Sacramento model calibration. Double mass plots of 8 MAPX time series were only
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available for approximately 4 years, which is one tenth of the period for which consistency plots are
currently derived using NCDC data. Guidelines for consistency corrections suggest that a correction
be computed for prolonged changes in slope that last several years or more.  Subjectively, the
MAPX double mass plots appeared to have less wobble or variation than the operational MAP time
series for the same period. However, due to the short period, it is difficult to ascertain whether
prolonged slope breaks are present. In addition, the detected differences between the long term
means from the MAP and MAPX time series need to be resolved before proper implementation of
calibration results in the operational system can be achieved. It is uncertain whether changes in the
NEXRAD computational algorithms can be seen in the double mass plots. Another factor adding
to the uncertainty regarding the quality of the xmrg files is that the P1 processing system has been
in use at ABRFC in addition to Stage III, which may introduce biases in the detected rainfall.

Based on 7 months of data, the runoff components of the Sacramento model were found to
be dependent on the scale of precipitation forcing. Surface runoff, generated when the upper zone
tension and free water storages are filled, is the most sensitive component of total runoff. Slower
responding base flow components proved to be the least sensitive to changes in the spatial scale of
precipitation forcing. A reformulated version of the SAC-SMA was found to be less dependent on
scale than the current version of the model.

An effort was made in Chapter 2 to derive guidelines for a priori SAC-SMA parameter
adjustment so that a basin could be calibrated using conventional techniques and then the parameters
would be adjusted for use with Stage III data. It was hoped that these guidelines would enable the
user to adjust lumped 6-hour SAC-SMA parameters for use with different spatial and temporal
scales. In essence, it was hoped that the user could recalibrate the parameters in the absence of a
sufficient period of Stage III data. These tests were performed with a single data source, the Stage
I xmrg files for ABRFC. One of the underlying assumptions of these tests was that the Stage III
data and archived operational MAP products would lead to the same long term mean in areas where
there is little spatial variability in the long term catch of gages. Comparison of archived MAP and
MAPX data (Chapter 3) revealed that the MAPX have a long term tendency to be biased low
compared to the operational gage derived MAP data. Preliminary comparisons of 7 months of
archived MAPX data and calibration MAP data for basins in ABRFC revealed a similar tendency.
Thus, one of the underlying assumptions of the parameter adjustment guidelines is invalidated, and
the issue of a priori parameter adjustments to account for changes in spatial and temporal scale
becomes more cloudy.

An analysis of over 3 years of archived MAPX and Map data found that the two precipitation
products have different statistical properties. First, long term means for the two can be up to 10%
different. This has implications for calibration and operational forecasting. Also, Stage III derived
MAPX values were found to represent precipitation events a occurring in fewer time intervals than
the gage derived MAP data. This could be the result of several factors. First, there are fundamental
differences in the computational algorithms. The operational MAP preprocessor generates a 24 hour
MAP value and then distributes it over four 6-hour time intervals. The MAPX preprocessor
generates hourly mean values. Also, the MAP preprocessor uses hourly, 3-hourly, 6-hourly, and
daily rain gage reports, while the MAPX preprocessor predominately uses hourly rain gages that
report at the top of the hour.

Simulations with archived operational MAP time series and historically calibrated model
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parameters indicated that larger biases were generated compared to the bias derived in calibration
This result indicates that the calibration MAP and operational MAP time series might be statistically
different. A direct, long term comparison cannot be made yet due to the limited overlap of the time
series. At the time of this writing, NCDC data is only available at HRL through the end of
September, 1993, while the archived operational MAP data begins in May of 1993.

Synthetic methods can be used to derive initial unit hydrographs for simulation. Most
extensively used in hydrologic simulations was the Nash method. The Clark time area method was
also used to generate unit hydrographs for comparison to the Nash unit hydrograph for one basm
However, some calibration of the unit hydrographs was performed.
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8. Recommendations

Based on the work conducted so far, several recommendations can be made for further
research topics. In addition, several practical software development efforts have already begun.

Strategies need to be developed for parameterizing and calibrating the SAC-SMA when
used in a sub-basin mode. This is part of the general problem of calibrating a semi-distributed
conceptual model when observed streamflow data is only available at the parent basin outlet.
Modeling results showed that calibrating a semi-distributed model by uniformly adjusting
parameters in all sub-basins can lead to poor simulations in certain instances. Perhaps
precipitation events occurring over individual sub-basins could be isolated and used to adjust
hydrologic model parameters. The problem remains in that SAC-SMA parameters are not
readily derived from physiographic data. Other continuous models that might be more easily
parameterized should be identified for testing.

Efforts are underway in HRL to import spatial data sets such as soils information into
ARC/Info and ARC-VIEW in order to assess parameter variability. Initially, these data will be
used to visually examine inter-basin and intra-basin variability of physical watershed data. As a
start, such information could be used to guide sub-basin delineation and justify the use of
different SAC-SMA parameters in different basins.

At the time of this writing, several ongoing research efforts may provide direction for
future NWS hydrological model usage. MIT has recently been awarded a 3 year research grant
from another agency to perform extensive comparative tests of their physically based distributed
parameter model against the SAC-SMA. Their model uses a gridded approach for each
computational element and is able to compute saturation excess and infiltration excess types of
runoff. Planned cooperation with HRL includes the provision of data sets and modeling results
for one of the basins studied in this report as well as 5 or 6 from other parts of the United States.
The University of Arizona is conducting research to address the problem of calibrating a semi-
distributed conceptual model. The Hydrologic Engineering Center of the U.S. Army Corps of
Engineers has plans to modify their event-based MODClarke model to perform continuous
simulations.

Given the usefulness of Stage III data for hourly lumped hydrologic simulation,
enhancements are underway in the Interactive Calibration Program to enable users to display
hourly simulation results for manual calibration of model parameters. Currently, the only
display option is associated with the WY-PLOT operation, which is limited to the display of
mean daily flow. As outlined in section 5.1.1, calibration of an hourly model by examining mean
daily flow values cannot be effectively performed. To alleviate this problem, design
requirements have been detailed for a new display function based on the PLOT-TS operation,
and at the time of this writing, a beta version of this plotting function is being tested in HRL.
With this capability, a user will be able to plot data at variety of time steps and will be able to
construct his own displays. As with the ICP WY-PLOT display, the user will be able to scroll
through the entire run period as well as change plotting scales. The plotting routine will be
developed in such a way that it will be easily converted to a stand alone version for the eventual
inclusion into an off-line research modeling system.
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The semi-distributed modeling results presented herein used MAPX time series computed
using in-house developed software. For future research, a beta version of a calibration MAPX
preprocessor has been developed and has been tested in HRL. In addition, a beta version is
being tested as an off-line preprocessor at OHRFC and SERFC. It is planned that this software
could eventually be delivered to the field to be used to develop MAPX time series for hydrologic
model calibration in the same way that MAP3 is used. As input, it uses Stage III xmrg files and
produces hourly or six hourly MAPX time series in OH DATACARD format. It requires a basin
boundary defined by lat/lon pairs. Testing with 9 basins defined using IHABBS basin
delineation software generated MXCO HRAP line segments that are identical to those in
ABRFC files. In addition, MAPX values derived that were identical to archived ABRFC
MAPX time series. This software uses the sfbdrv.f subroutine that is used in the DEFINE
BASIN command of NWSRFS. In this way, any further research will use the same algorithms
that are used operationally in the field. More importantly, use of this tool by RFCs would ensure
that the same precipitation processing algorithms are used in calibration as in operational
forecasting with Stage IIT data. Recall that the algorithms in the Calibration MAP3 program are
different than those used to compute MAP values in OFS.

Procedures need to be developed for the generation of synthetic unit hydrographs. As
seen in Chapter 5, hourly lumped unit hydrographs developed from synthetic methods
performed better than those generated by using an S-curve technique with the 6-hour unit graphs.
For the Nash and Clark methods of unit hydrograph derivation outlined in Chapter 5, HRAP
(4km.) connectivity was used. At the time of this writing, the IHABBS software developed by
NOHRSC is being modified to include both the Soil Conservation Service (Now the National
Resource Conservation Service-NRCS) and Clark methods of generating unit hydrographs. This
effort was begun for the purpose of generating unit hydrographs for the Site Specific model.
IHABBS is based on 500m. resolution data. Once completed, this capability needs to be further
tested for developing initial hourly unit graphs that can be used with the SAC-SMA.

Continued work needs to be directed at both manual and automatic calibration using
NEXRAD. For the majority of the lumped and semi-distributed tests, automatic calibration was
used to derive SAC-SMA parameters due the short period of data. Manual calibration efforts
should be continued in order to gain insight as to how the SAC model behaves with input of
greater intensity.

A comparison of the calibration MAP time series and the operational MAP time series for
the 8 test basins in ABRFC needs to be performed. This can be done once the latest NCDC
precipitation data is mounted. The calibration time series need to be extended beyond the current
ending point of September, 1993 so as to overlap as much as possible the operational MAPX
time series that start in May, 1993. Efforts are underway to make available the hourly and daily
NCDC precipitation data so that a calibration MAP time series can be derived up to 1998.

At the time of this writing, analyses are being conducted using the operational MAPX and MAP
time series from ABRFC from 1993 to 1998, thus extending the analyses presented in Chapter 3.
The Calibration MAP time series will be included this analyses as soon as the hourly
precipitation data is put on the HRL system.

In addition, comparison of operational MAP and MAPX data should continue so as to
monitor the change in bias due to the implementation of improved Stage II and Stage III
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processing procedures. Given longer time series of these two types, more significant conclusions
can be made regarding the suitability of the Stage III data for calibration.

The Muskingum-Cunge channel routing procedure needs to be completed. Parameters
for this method could be developed from physiographic data. The reformulated SAC-SMA
mode] should be tested further with observed stream gage data. In order for this model to ever be
used in OFS, modifications to the operational MAPX preprocessor need to be made so that the
coefficient of variation and percent of rain covered area are computed hourly and passed to the
reformulated SAC-SMA.

The scaling studies in Chapter 2 were limited to the 7 month period of archived xmrg
data at the time. Given the existence of a longer period of Stage III data, the scaling studies
should be extended in order to validate the results presented.

Tests are already underway to extend the semi-distributed analyses of Chapter 5 to the
basin TIFM7, which is the largest of the 9 test basins. A historical calibration has been
performed, and attempts are now being made to re-calibrate the SAC-SMA parameters for use
with MAPX in a lumped approach. Semi-distributed tests will soon follow. With continued
testing of a semi-distributed approach, we hope to evaluate the sensitivity of observed and
computed outflow hydrographs to the spatial variability of precipitation.



Appendix A

Scatter Plots of MAP Values vs MAPX Values for 9 Basins in ABRFC

Period of Analysis: June 1993 to November, 1996
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Appendix B

Monthly Ratio of MAPX to MAP for 8 Basins in ABRFC

Period: May 1993 to September 1996

B.1



(9661-£661) UUO
| _®C_3—_.. | _Qm_H__ _“_.OMO_

|

h“_.O_O_
T

_“_.U_O_
o

aunp
|

PR I R _

20d13 1o} pue oiey dvIN/XdVIN
jo oney Alyjuopy  L-g ainbi4

|

70

90

80

dVIN/XdVIN

¢l

vl

9l

2



bny Aepy qe4

(9661 - £661) Yluow

AN Bny Aey ge4 AoN Bny Aey ge4 AoN  Bny

T T T

I

R A

b, -/
N Y

LINJOF 10} dVIN/XdVIN
jo oney Ajyuol z-g ainbiy

Go

dew/xdew

0
-

Gc

B.3



Jdes sunp yosepy 28Q

(9661-£661) Yiuow
deg  aunp yosepy 29Q

deg sunp yosep o29Q

dag aunp

T T A I N T N Y Y Y N B

COSNM Jo} dVIN/XdVYIN
jo oney Ajyuoy ¢-g oinbi4

!

]

]

f

f

I

I

]

i

0

GO

~—

dew/xdew

0
<

G¢

B



(9661 - £€661) Uluow

jo oney Alyyuoy -g @Inbi

bny Aepy qge4 AoN Bny Aepy ge4 AoN Bny Aepy ge4 aAoN  Bny
l/ I/\I/ J ] ]
. % \/ \/ SO
b %
/ y / :
/\ N / |
— \ VAN 10} dVIN/XJdVIN

v0

90

80

~

N
-

<
-

©
-

8l

dew/xdew

B.5



Bny Aep

ged

(9661 - €661) yuow

AN  Bny  Aepy

ged4 AON bBny Aep

gs4 AoON bBny

[N A T R R Y N D A

[ R T e N R R

C¢OVL 1o} dVIN /XdVYIN
jo oney Ajyjuoy g-g ainbi-

[ N

]

™

A"

190

Q
o

o«

N
b

)

9l

dew/xdewl

B.6



bny Aepy

ged

AON

(9661 - £661) Uuow

bny Aey 994 AoN bBny Aepy  ged

AON

Bny

T 1T 1T 1T 7 7

e T Y B B

/

!

i
{

TR

/ .
ML

CONZL 10} dVYIN/XJVIN
jo oney Ajywuoy 9-g ainbi4

I T

v0

- 90

80

cl

vl

9l

dew/xdew

B.



(9661 - £661) Yiuow

bny Aepw ge4 AoN Bny Aepy ge4 AoN Bny Aepy ge4 AoN

R e A e

LINAIL 104 dVIN /XdVIN
jo oney Ajyiuop /-g ainbi4

.././ _ " .. -
V .L>». 1]

l\,,\l, ;
~§
B
&
—

. |
L]

v0

90

80

~

N
-

<
-

9l

8l

dew/xdew

B



(9661 - £€661) Yiuow

1dag aunp yoiepy o9 1deg eunp yoleyy 99 1deg sunp yolepy o9 1des sunr
- 0

I ™ "N R Y N E T ) R

90

0
o

.
-

ZOLLAN 10} dYIN/XdVIN
jo oney Ajyuoly g-g ainbi-

N
A

9l

8l

dew/xdew

. B.9



